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Abstract 

The antibiotic treatment of periprosthetic joint infections (PJI) is complicated by the presence of biofilm produced by 
bacteria on the abiotic surface of the implant. Bacteria within the deeper layers of the biofilm become metabolically 
less active, resulting in antibiotic tolerance due to several mechanisms. This review describes the basic principles 
of antibiotic treatment in PJI in relation to the behavior of bacteria within the biofilm. The concept of biofilm-active 
antibiotics will be explained from an in vitro as well as in vivo perspective. Evidence from clinical studies on biofilm-
active antibiotics in PJI will be highlighted, mainly focusing on the role of rifampicin for Gram-positive microorganisms 
and fluoroquinolones for Gram-negative microorganisms. The optimal treatment duration will be discussed as the 
timing of switching to oral antibiotic therapy.
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Introduction
Periprosthetic joint infection (PJI) is characterized by 
the formation of biofilm on the implanted foreign body 
[1]. Biofilm consists of bacteria (in some cases yeasts) 
surrounded by an extracellular matrix and offers a 
protective environment for the microorganisms present 
[2]. These microorganisms enter a dormant state 
and, consequently, antimicrobial agents cannot exert 
the desired effect on these microorganisms [3]. Even 
prolonged courses of antimicrobial therapy may not 
effectively eradicate microorganisms present in biofilm, 
and hence, infections involving biofilm are prone to 

relapses after withdrawal of antimicrobial therapy [4]. 
The protective environment that biofilm offers matures 
over a course of days to weeks, implying that the duration 
for which an infection has existed is an important 
determinant of the outcome of antibiotic treatment [4].

The inherent properties of biofilm have led to the 
emergence of several principles for the treatment of PJI. 
First, surgical source control with extensive debridement 
is an essential part of treatment. Obtaining source 
control for biofilm infections presenting in an early 
stage (generally acute infections with an immature 
biofilm) may be restricted to surgical debridement with 
implant retention (DAIR) [5]. Achieving source control 
for chronic biofilm infections (generally assumed to be 
in existence for more than 3 to 4 weeks) often requires 
complete removal of the foreign body due to the presence 
of a mature biofilm. Once the biofilm achieves maturity, 
persister cells with tolerance towards antibiotics 
are present, and surgical debridement and systemic 
antimicrobial therapy alone will not be able to eradicate 
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the infection. Second, select antimicrobials with activity 
within a biofilm are needed [6]. Third, the duration of 
antimicrobial therapy is prolonged and often extends 
to a treatment duration of three months, depending on 
the surgical strategy [6, 7]. In this paper, we will describe 
the behavior of bacteria within a biofilm and what 
characterizes anti-biofilm active antimicrobials based 
on in vitro and clinical data. We will also focus on the 
current state of knowledge of treatment duration and 
the role of intravenous (IV) vs. oral antibiotic therapy in 
treating biofilm infections.

What is a biofilm and how do bacteria behave in it?
Biofilm is a complex network formed between bacteria, 
the prosthetic material and the host. Aggregates of 
bacteria (possibly multiple species) form a polymer 
matrix, which consists of excreted polysaccharides, 
proteins and DNA. This matrix may also be 
supplemented by materials from the host, e.g., in the 
case of a mounted immune response [2]. Biofilm is 
characteristic of chronic infections, and it offers a 
protection against the host immune response and the 
action of antibiotics [8]. Bacteria embedded in chronic 
biofilms are in direct contrast with the free-floating, 
planktonic form of bacteria normally seen in acute 
infections, although bacteria may once again release 
themselves from a biofilm in the planktonic state. In 
PJI, biofilm is importantly associated with the presence 
of an abiotic surface (the foreign body, the implant), but 
aggregates and/or biofilms are also seen around biotic 
surfaces or without a direct relation to a surface [2]. 
Biofilm has a concentration gradient of nutrients and 
oxygen relative to the depth: the microorganisms present 
in the inner core are metabolically inactive and non-
dividing [9].

Due to these characteristics, there are several factors 
that contribute to the antibiotic tolerance of bacteria in 
biofilm:

•	 Antibiotics may have difficulty diffusing through 
the matrix of the biofilm and reaching effective 
concentrations, especially in the inner core. This, 
however, is a temporary effect as an equilibrium 
is eventually reached with antibiotic treatment. 
Nevertheless, slowly rising antibiotic concentrations 
may facilitate the build-up of antibiotic tolerance 
[10].

•	 Components of the matrix of the biofilm may 
scavenge antibiotics, rendering them inactive. This 
has been described with alginate polysaccharides 
produced by Pseudomonas aeruginosa and 
tobramycin [10].

•	 The biochemical conditions in the biofilm may result 
in reduced activity of antibiotics [3]. For example, 
aminoglycosides do not work adequately in an 
anaerobic environment.

•	 Microorganisms inside the biofilm are dormant 
and do not divide actively [3]. This makes β-lactam 
antibiotics ineffective, as they require dividing 
microorganisms to exert their bactericidal effect.

•	 Microorganisms in the biofilm may show adaptive 
resistance, e.g., by upregulating β-lactamase 
production or efflux pumps. These mechanisms 
are generally not biofilm-specific, although 
circumstances may facilitate their emergence, and 
biofilm-specific adaptive resistance mechanisms have 
been described [10].

•	 Lastly, acquired resistance may play a role in biofilm 
infections as in any other infections. In the case of 
biofilm infections, the issue is complicated by the 
fact that the environment may increase the frequency 
of genetic mutations and facilitate horizontal gene 
transfer [4].

These mechanisms of antibiotic tolerance have been 
particularly well studied in Pseudomonas aeruginosa, due 
to its role in biofilms in cystic fibrosis [4]. P. aeruginosa 
has an impressive arsenal of adaptive resistance 
mechanisms available, but relatively little is known about 
how well the resistance mechanisms apply to the much 
more commonly encountered Gram-positive and other 
Gram-negative microorganisms than P. aeruginosa in PJI 
[11].

What are biofilm‑active antibiotics?
An "anti-biofilm active" antibiotic is classically 
considered as an antibiotic that penetrates well into 
the biofilm and demonstrates its capability to eradicate 
the bacteria embedded within it. In addition, for PJI 
treatment, it is important that the antibiotic penetrates 
well into the bone and, for oral antibiotics, has adequate 
bio-availability [6]. For example, β-lactam antibiotics, 
especially in their oral formulation, are generally not 
recommended as the mainstay of treatment. β-lactams 
have limited oral bio-availability and are generally 
considered bactericidal. Hence, their activity in chronic 
biofilms is hampered by bacteria not actively dividing 
[12].

Data from in vitro studies
Several biofilm models have been developed to assess 
the property of antibiotic tolerance of microorganisms 
in biofilms. Concentrations at which antibiotics show 
efficacy within a biofilm can be quantified by using 
parameters such as the minimal biofilm inhibitory 
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concentration (MBIC) and minimal biofilm eradication 
concentration (MBEC) [13].

Molina-Manso  et al. quantified MBEC’s for several 
antibiotics used in the treatment of staphylococci on 
a collection of 32 clinical isolates from PJI [14]. Their 
study showed that, for compounds such as cloxacillin, 
vancomycin, clindamycin, co-trimoxazole, ciprofloxacin 
and daptomycin, median concentrations necessary 
to eradicate biofilms were generally over 1,024 mg/L, 
whereas a large proportion of the isolates tested 
susceptible using conventional MIC testing [15]. Even 
for the most biofilm-active antibiotic, rifampicin, the 
median MBEC was 32 and 64 mg/L for Staphylococcus 
epidermidis and Staphylococcus aureus, respectively. 
These concentrations are nowhere near feasible with 
systemic therapy in in vivo situations.

It is important to recognize the shortcomings of such 
quantifications to mimic the in vivo condition. In the 
commonly used Calgary Biofilm Device (nowadays 
known as MBEC® assay), biofilm matured during an 
overnight incubation on an abiotic surface, in a situation 
with continuous exposure to the medium, but without 
the complex host anatomy and immune response [8]. In 
addition, these biofilms were only exposed to antibiotics 
for a second overnight incubation, whereas in real life, 
these chronic infections are treated with source control 
and weeks to months of antibiotic therapy. Assays 
of biofilm activity have not been adopted in routine 
laboratory testing due to these discrepancies, combined 
with the lack of standardization and the fact that 
enormously high MBECs obtained have no application 
under in vivo conditions [16].

Nevertheless, these in  vitro quantifications have 
made important contributions. For example, they have 
drawn attention to providing high local concentrations 
of antibiotics as a part of biofilm treatment regimens, 
as these may approximate MBEC’s in in vivo situations 
[3]. Also, the comparatively lower MBEC’s of rifampicin 
provide evidence for its crucial role in the treatment 
of staphylococcal infections. Nevertheless, evidence 
obtained from in  vitro and experimental animal 
studies should be seen in conjunction with data from 
human studies. Similar patterns of lower MBEC’s, or 
other quantifications of biofilm activity, may serve as 
indications for further research for the clinical usefulness 
of specific (new) compounds or compound combinations 
[16].

Data from clinical studies
Rifampicin as a biofilm active antibiotic
Over the last decades, rifampicin has emerged as a 
cornerstone in the treatment of staphylococcal PJIs. 
Rifampicin penetrates well into tissues, including bone, 

achieves good intracellular concentrations, and has 
bactericidal activity in bacteria that are not dividing [17]. 
It can also be usually prescribed orally due to its excellent 
oral bioavailability. A microbiological disadvantage of 
rifampicin is its rapid induction of resistance, which is 
why (1) rifampicin should always be used in combination 
with another active anti-staphylococcal antibiotic 
and (2) it is recommended to start rifampicin after 
surgical source control when the bacterial inoculum 
has decreased [18, 19]. Opinions differ on whether the 
concomitant anti-staphylococcal therapy should have 
biofilm activity as well, or whether it is merely given to 
prevent the emergence of resistance with rifampicin 
being the mainstay of treatment, a notion that would 
open up a wider array of compounds. The choice of the 
best co-drug is complicated by the interaction between 
rifampicin and several antibiotics as a consequence of 
the cytochrome P450 system induction, but the clinical 
relevance of these interactions is not always clear. The 
most optimal companion antibiotic of rifampicin has 
been analyzed in a multinational non-experimental 
study on 669 cases of acute early or late staphylococcal 
PJI, of which 407 received treatment with rifampicin 
[19]. Unadjusted percentages of treatment failure were 
12–14% with levofloxacin, moxifloxacin and clindamycin, 
20–21% with β-lactams, linezolid and minocycline, and 
38% with co-trimoxazole. These findings strengthen the 
position of fluoroquinolones as first-line companion 
antibiotics.

The role of rifampicin in staphylococcal PJI
Rifampicin has shown its activity in in vitro studies, 
animal studies and non-experimental clinical studies 
for staphylococcal PJI [20]. The clinical efficacy of 
rifampicin in the treatment of orthopedic device-related 
infections was established by a randomized clinical 
trial (RCT) published in 1998 on acute staphylococcal 
infections. This study stopped early after an interim 
analysis due to the clear superiority of combination 
therapy with rifampicin compared with ciprofloxacin 
monotherapy [21]. However, its interpretation 
is  problematic since ciprofloxacin monotherapy would 
nowadays not be considered an optimal therapy for 
deep-seated staphylococcal infection, due to the low 
barrier for resistance emergence. The new generation 
of fluoroquinolones with more potent Gram-positive 
activity has largely replaced ciprofloxacin for this 
indication [22].

A second RCT on rifampicin combination therapy 
for acute staphylococcal PJI was published in 2020 and 
questioned the need for rifampicin. This study did not 
show a benefit compared to vancomycin or cloxacillin 
monotherapy [23]. The trial has been criticized for (1) 
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not separating out early postoperative infections and 
late hematogenous infections, (2) differences between 
the trial registration protocol and the manuscript with 
regard to the description of the thoroughness of the 
surgical treatment, (3) the unusual dosage of rifampicin 
(300 mg t.i.d. instead of more commonly 450 mg b.i.d.), 
(4) a lack of monitoring compliant intake of rifampicin, 
(5) the low statistical power of the study, (6) a lack of 
detailed description of the failures, and (7) the choice of 
the companion antibiotic of rifampicin (vancomycin or 
cloxacillin) [24]. Apart from in vitro data and the RCT 
by Zimmerli et al., many observational studies indicated 
a clear benefit of rifampicin on clinical outcomes in 
staphylococcal PJIs [22, 25]. Like many observational 
studies, analyses are compounded by confounding bias 
(rifampicin may be reserved for more complicated 
cases), competing risks (impeding failure may prevent 
the initiation of rifampicin treatment), and appropriate 
categorization of rifampicin treatment based on starting 
point and duration. Despite these limitations, rifampicin 
is still considered the first-line antibiotic treatment for 
staphylococcal infections with the currently available 
evidence.

The role of rifampicin for other Gram‑positive 
microorganisms
Rifampicin has also been considered as a treatment 
adjunct in streptococcal and Cutibacterium spp. PJIs. 
Commonly, β-lactams and clindamycin are used for 
these infections, but they demonstrated limited in 
vitro activity against biofilm-embedded bacteria, while 
rifampicin showed better in vitro activity [26–29]. For 
both streptococcal and Cutibacterium spp. PJIs, the only 
available clinical studies are observational.

Lora-Tamayo et al. performed a multinational study 
of 462 cases of streptococcal PJI treated with DAIR, 
of which 52% were hematogenous infections and the 
remainder were post-surgical ones [30]. The authors 
showed that the cumulative duration of rifampicin use in 
the first 30 days post-surgery was associated with lower 
failure rates, and suggested that either prescription of 
a β-lactam or rifampicin was necessary for an optimal 
outcome.

In another multinational study, Kusejko et al. analyzed 
187 cases of Cutibacterium spp. PJI, of which 85% was C. 
acnes. The infections generally involved the shoulder or 
hip, and 95% presented with a chronic infection at least 
a month after implantation [31]. In each of the three 
main subgroups of surgical approaches (one- and two-
stage revision, and DAIR), the addition of rifampicin to 
the antibiotic regimen was associated with better clinical 
outcomes in the unadjusted analyses. In the adjusted 

analysis of treatment failure in the complete cohort, 
rifampicin use was protective with a hazard ratio (HR) 
of 0.5, but the 95% confidence interval crossed 1. This 
effect size was similar in magnitude to the detrimental 
effect of the use of DAIR on the outcome of these chronic 
infections (HR 2, statistically significant), indicating that 
the surgical approach in Cutibacterium infections is more 
important than the selected antimicrobial therapy. All in 
all, there may be clinical benefit to combination treatment 
with rifampicin in selected cases of streptococcal and 
Cutibacterium PJI, but it is not routinely recommended.

The role of fluoroquinolones in Gram‑negative 
microorganisms
In Gram-negative PJI, the use of ciprofloxacin is generally 
considered pivotal for eradication of biofilm, although 
there is limited evidence from in vitro and animal studies. 
In vitro data in which fluoroquinolones showed the 
highest biofilm eradication rate when compared to other 
antibiotics was mostly demonstrated in Pseudomonas 
aeruginosa biofilms [32, 33], but has also been observed 
for Escherichia coli [34] and Stenotrophomonas 
maltophilia [35].

The largest observational study has been published 
by Rodriguez-Pardo et al. and included 174 cases 
treated with DAIR, of which 78% were caused by 
Enterobacterales, and 20% by Pseudomonas aeruginosa 
[36]. Treatment with ciprofloxacin had a clinical success 
rate of 79%, whereas treatment with other antibiotics 
in the cases of both ciprofloxacin susceptibility or 
ciprofloxacin non-susceptibility resulted in success 
rates around 40% (P < 0.001). It is important to note 
that only ten patients in this study were treated with 
co-trimoxazole, and therefore, the comparative 
effectiveness of ciprofloxacin and co-trimoxazole as 
oral alternatives remains to be established. A smaller 
observational study (n = 47) confirmed the inferiority 
of other oral antibiotics to ciprofloxacin [37]. The only 
direct comparison that has been made between an oral 
fluoroquinolone and an alternative regimen was with 
intravenous β-lactams [38]. In this French study, patients 
who could not be treated with fluoroquinolone remained 
on IV β-lactams during the whole treatment period with 
or without another co-antibiotic. The clinical outcome 
between both groups was similar.

Duration of antibiotic therapy
Traditionally, treatment duration for PJI has been at 
least 3 months, which is substantially more than the 
4 to 6 weeks that is generally advised in the case of the 
absence of orthopedic hardware [39]. This is motivated 
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primarily by the difficulty to eradicate bacteria embedded 
in biofilm.

Bernard et al. performed the multicenter DATIPO 
RCT in France, in which 410 patients with a PJI of the 
hip or knee were randomized to either 6 or 12 weeks of 
antibiotic therapy after surgical source control [7]. The 
primary endpoint;??? persistence or relapse of infection 
within 2 years after antibiotic therapy withdrawal 
occurred in 18.1% of those treated for 6 weeks vs. 9.4% of 
those treated for 12 weeks, with the confidence interval 
of the risk difference excluding the non-inferiority of 6 
weeks of treatment. In subgroup analyses, the inferiority 
of a 6-week antibiotic regimen was particularly evident 
in patients treated with DAIR, with an absolute risk 
difference of 16.2%. The primary endpoint was not 
significantly different for patients who were treated with 
a one- or two-stage revision. This finding supports the 
notion that the presence of infected orthopedic hardware 
is an important factor in the prognosis of PJI treatment. 
The RCT performed by Benkabouche et al. even 
demonstrated that recurrences did not differ between 4 
and 6 weeks of antibiotic treatment after the removal of 
orthopedic hardware [40]. However, it must be noted that 
one-stage revision surgeries were not included in this 
trial, and, therefore, the treatment duration after one-
stage exchange arthroplasty remains a matter of debate.

A Spanish multicenter RCT by Lora-Tamayo compared 
an 8-week antibiotic regimen with 3- or 6-month 
regimens for staphylococcal PJI of the hip or knee treated 
with DAIR [41]. In the intention-to-treat analysis, the 
short regimen was non-inferior regarding clinical cure. It 
should be pointed out that, in this trial, patients were only 
included if they could be treated with a fluoroquinolone 
combined with rifampicin, and in addition, cases with an 
initially poor prognosis with a high odds of developing 
early failure were excluded.

Although uncertainties remain based on the above-
mentioned studies, all in all, there is potential for 
shortening antibiotic treatment duration to 6 weeks, 
in particular, for selected groups of patients with an 
acute PJI and a low risk of failure after DAIR, and for 
chronic infections treated with revision surgery. Results 
are awaited of the SOLARIO trial. This trial evaluates 
whether 7 or fewer days of systemic antibiotics is non-
inferior to a long course of antibiotic treatment if local 
antibiotics have been applied. Although the study is 
designed for orthopedic infections in general, making 
it more difficult to evaluate subgroups with sufficient 
statistical power, cases with a PJI are included as well 
[42].

When is it safe to switch to oral therapy?
A final recurring question with regard to the treatment of 
PJI is at what time point a switch from intravenous to oral 
treatment is justified. Traditionally, osteomyelitis and PJI 
were considered an entity that should be treated with 
intravenous antibiotics only [43]. However, as previously 
discussed, many compounds considered critical in the 
treatment of PJI (rifampicin, fluoroquinolones) have 
excellent bio-availability and do not rely on high plasma 
concentrations for bone penetration.

Early oral therapy in the cases of osteomyelitis and 
PJI has received momentum in recent years through 
the OVIVA trial. In this British multicenter RCT, 
1054 patients with bone and/or joint infection were 
randomized to either a switch to oral therapy within 7 
days after surgery, or a full 6-week course of intravenous 
antibiotics and, if needed, followed by additional oral 
therapy [44]. In 61% of randomized patients, the infection 
was related to a foreign body, including prosthetic 
joints, and was surgically managed with DAIR, definite 
removal of the implant, or one- or two-stage exchange. 
Early oral treatment, achieved in approximately 90% 
of patients randomized to this arm, was non-inferior 
with regard to treatment failure as compared to a long 
course of intravenous antibiotics. This trial supports 
the early switch to oral antibiotics, even in complex 
orthopedic implant-related infections, provided that 
adequate surgical debridement has been achieved and an 
oral antibiotic with antibiofilm properties and sufficient 
bioavailability is available. Guidelines on the type of 
targeted antibiotics and corresponding dosage have been 
previously described [45, 46].

Conclusions

•	 Antimicrobial tolerance, developing during 
maturation of the biofilm, makes PJIs difficult to 
treat and necessitates adequate source control, 
antimicrobial therapy with "anit-biofilm active" 
antibiotics and prolonged courses of antibiotic 
therapy.

•	 Applying biofilm models for susceptibility testing in 
routine laboratory testing is currently not clinically 
useful. Ideally, though, in the future, individual 
characteristics of the biofilm related to the bacterial 
strain and the manner of the biofilm being embedded 
into the host would shape antibiotic choices.

•	 Biofilm-active therapy in the case of Staphylococci 
consists of rifampicin, supplemented with a second 
antibiotic to prevent resistance formation. Most 
experience exists with using fluoroquinolones with 
proper Gram-positive action as companion drugs 
(i.e., levofloxacin, moxifloxacin), but other antibiotics 
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with good bio-availability and bone penetration may 
just be as adequate.

•	 Rifampicin for Streptococci and Cutibacterium 
spp. showed good activity in in vitro biofilms. 
Observational studies suggested that it might 
increase clinical cure, but the surgical strategy might 
be a more important predictor for clinical outcomes. 
Routine use is not recommended, but it might be 
considered in certain subgroups of patients.

•	 Fluoroquinolones show good in vitro activity 
against biofilms produced by certain Gram-negative 
organisms. In addition, observational studies 
reported good outcomes using this compound, and 
is, therefore, still the first-line antibiotic treatment for 
PJIs caused by Gram-negatives.

•	 Antibiotic treatment duration should be 3 months for 
acute PJIs treated with DAIR but may be shortened 
for the cases with a low risk of failure. In the case 
of revision surgery, 6 weeks of antibiotic treatment 
probably suffice.

•	 IV antibiotics can be switched early to an oral 
treatment regimen, provided that an antibiotic with 
anti-biofilm properties and adequate bioavailability is 
available.
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