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Abstract 

Background Thirty-day readmission is an increasingly important problem for total knee arthroplasty (TKA) patients. 
The aim of this study was to develop a risk prediction model using machine learning and clinical insight for 30-day 
readmission in primary TKA patients.

Method Data used to train and internally validate a multivariable predictive model were obtained from a single 
tertiary referral centre for TKA located in Victoria, Australia. Hospital administrative data and clinical registry data were 
utilised, and predictors were selected through systematic review and subsequent consultation with clinicians caring 
for TKA patients. Logistic regression and random forest models were compared to one another. Calibration was evalu-
ated by visual inspection of calibration curves and calculation of the integrated calibration index (ICI). Discriminative 
performance was evaluated using the area under the receiver operating characteristic curve (AUC-ROC).

Results The models developed in this study demonstrated adequate calibration for use in the clinical setting, despite 
having poor discriminative performance. The best-calibrated readmission prediction model was a logistic regression 
model trained on administrative data using risk factors identified from systematic review and meta-analysis, which are 
available at the initial consultation (ICI = 0.012, AUC-ROC = 0.589). Models developed to predict complications associ-
ated with readmission also had reasonable calibration (ICI = 0.012, AUC-ROC = 0.658).

Conclusion Discriminative performance of the prediction models was poor, although machine learning provided 
a slight improvement. The models were reasonably well calibrated, meaning they provide accurate patient-specific 
probabilities of these outcomes. This information can be used in shared clinical decision-making for discharge plan-
ning and post-discharge follow up.
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Introduction
Unplanned hospital readmission following total knee 
arthroplasty (TKA) disrupts the patient’s recovery and 
incurs high costs to the healthcare system [1–3]. Read-
mission can be predicted according to the patient’s char-
acteristics and a broad range of risk factors [4]. Although 
reasonable accuracy can be achieved in certain clinical 
settings [5, 6], predicting outcomes, especially readmis-
sion, is often difficult in TKA patients [4, 5]. This is due 
to many factors, including a lack of data of sufficient 
granularity to discriminate between TKA patients who 
experience deleterious outcomes and those who have an 
uncomplicated postoperative course [4, 7].

Machine learning algorithms offer an avenue for 
potential predictive performance gain given their abil-
ity to capture complex patterns in the data [4, 7]. This 
technique does not rely on pre-specified relationships 
between predictors and outcomes, instead utilising com-
putational and statistical principles to derive patterns 
without direct human input. Clinical insight into predic-
tor selection can be used in conjunction with machine 
learning to increase the clinical relevance and interpret-
ability of the model [8].

The aim of this study was to develop a clinically appli-
cable multivariable predictive model for 30-day read-
mission following TKA, compliant with best practice 
guidelines [9], to be used in shared decision-making 
between patient and surgeon.

Materials and methods
Patient selection
Inclusion criteria: all primary TKA patients identified 
in the administrative database at the study hospital for 
whom data were available in the St Vincent’s Melbourne 
Arthroplasty Outcomes (SMART) registry, including 
simultaneous bilateral procedures, TKA for inflamma-
tory arthropathies, and TKA for traumatic aetiologies. 
Administrative data are available for use in the live clini-
cal environment, whereas the SMART registry contains 
additional clinically relevant information not available 
in the live clinical setting which might improve predic-
tive performance. The SMART registry is a prospective 
registry comprising longitudinal data for TKA and total 
hip arthroplasty patients at the study hospital, with 100% 
capture of elective procedures. It has been described in 
detail previously [10]. Unplanned 30-day readmission 
was defined as readmission to the hospital for a com-
plication, or monitoring for a suspected complication, 
within 30  days following discharge from the orthopae-
dic unit after TKA surgery, for any cause. This included 
admission to non-orthopaedic units for any reason that 
was not part of the routine postoperative course or was 

not planned for any other reason related to the patient’s 
comorbidities. Exclusion criteria: revision, unicondylar, 
and patellofemoral arthroplasty, planned readmissions 
including admissions to the hospital for other procedures 
such as chemotherapy or other planned surgical proce-
dures. Admissions to the rehabilitation unit or “hospital 
in the home” service was also excluded.

Data processing
Data were randomly split into training (75%) and testing 
(25%) sets, with testing set data kept separate from train-
ing set data in every step of the model development and 
evaluation processes. A seed was set to ensure reproduc-
ibility in random number generation for reproducibility 
of results and to ensure the test set was not used in any 
stage of the model training process. A primary TKA pro-
cedure was considered a case, with both primary TKA 
surgeries for each individual patient with a bilateral 
TKA grouped into either the training set or testing set. 
All models were trained using fivefold cross-validation 
with 10 repeats [11] to obtain a more stable estimate of a 
training set performance before evaluating models on the 
testing set.

The value of machine learning was also explored, in 
terms of its ability to be used in conjunction with evi-
dence from the literature and clinical insight on read-
mission risk factors to enhance predictive performance 
and clinical applicability, and to determine how well 
these population-level risk factors translated into a risk 
prediction model for individualised patient prognosti-
cation based on specific risk profiles. Knowledge of risk 
factors provides population-level information regarding 
patient characteristics that are associated with readmis-
sion, whereas predictive models provide individualised 
patient-level probability estimates for the patient’s risk 
[12]. The value of information available at discharge from 
the hospital following TKA surgery was also evaluated in 
terms of its ability to enhance predictive performance. 
The model was developed with the future intention of 
being implemented in a hospital’s existing information 
technology infrastructure, facilitating automatic informa-
tion retrieval from the patient’s medical record. However, 
the added value of information available in a research 
registry was also explored.

There were four considerations for models developed 
in this study:

1) Temporal availability of predictors: initial consulta-
tion with the orthopaedic surgeon, specifically when 
TKA surgery is offered to the patient, or immediately 
prior to discharge. The rationale for this was that a 
model using data available at the initial consultation 
would allow the maximum amount of time to imple-
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ment risk mitigation strategies and discharge plan-
ning.

2) Model architecture: logistic regression or random 
forest. Logistic regression is commonly used for the 
prediction of binary outcomes in healthcare, and it 
is a familiar and intuitive approach for clinicians, but 
machine learning has the potential to improve pre-
dictive performance in the orthopaedics [13]. Ran-
dom forest and logistic regression have been used in 
prior literature on the readmission prediction [5].

3) Dataset availability of predictors: administrative data-
base, or only in the registry. The rationale for this was 
that a model using administrative data could poten-
tially be integrated into the hospital’s information 
technology system for automatic data processing.

4) Variable selection method: high importance in Del-
phi and focus group, high and moderate importance 
in Delphi and focus group, or systematic review 
predictors. A comparison of the different predictor 
selection approaches was included because readmis-
sion is a complex phenomenon with many potentially 
influential predictors [14]. Therefore, comparing a 
variety of approaches increased the likelihood of 
developing a predictive model with strong predictive 
performance as well as clinical relevance [8].

To reduce overfitting, strategies were employed such 
that there were less than 10 events (readmissions) per 
variable [15]. For logistic regression, the least absolute 
shrinkage and selection operator was used. For random 
forest, models were retrained using only the highest-
ranked predictors according to variable importance 
factors.

Missing data were considered missing at random 
except for Veteran’s RAND 12-item health survey (VR-
12) [16] scores, which were only collected routinely from 
1 January 2006. Variables with more than 20% missing 
data were excluded [17]. For the remaining variables, 
k-nearest neighbours imputation (k = 5 nearest neigh-
bours) was used because it is considered adequate for the 
purpose of prediction [18] and performs well for ≤ 20% 
missing data [17].

To test the impact of k-nearest neighbours’ imputation 
on model performance, two logistic regression models, 
with the least absolute shrinkage and selection operator, 
were trained to evaluate alternative strategies for han-
dling missingness in the VR-12 variables. One model was 
trained with all predictors except for the VR-12 variables. 
The other model was trained with all predictors using 
data from 1 January 2006 onwards. Again, testing set data 
were kept separate from training set data in every step of 
the model development and evaluation processes.

A version of the registry dataset was generated with-
out merging with the administrative dataset to determine 
whether the greater number of events (readmissions) 
available in the registry improved the predictive perfor-
mance [19]. Whereas the administrative database only 
includes data from 1 July 2002 onwards, the registry con-
tains data from 1998. The predictor selection method and 
model architecture for the best-performing model overall 
were applied to this registry-only dataset.

Risk factors were selected from the systematic review 
and meta-analysis [14] carried out by the authors of this 
study for which there was moderate- or high-quality evi-
dence and which correlated with the readmission. To 
utilise the knowledge of clinicians [8], a modified Del-
phi survey and focus group study was carried out [20]. 
Variables selected for the model were those with a high-
importance vote by a simple majority of ≥ 50%. Predic-
tors voted as high-importance in the Delphi survey, 
despite lack of systematic review evidence for it being a 
readmission risk factor, included the following: preopera-
tive patient-reported pain level, dementia, intensive care 
unit/high dependency unit admission prior to discharge, 
and return to theatre prior to discharge. Dementia was 
the only one of these predictors which has been inves-
tigated in the literature, and it did not increase the risk 
of readmission. The following predictors were correlated 
with readmission in the literature but did not receive a 
high-importance vote in the Delphi survey: number of 
prior emergency department presentations (12 months), 
age, sex, low socioeconomic status, historical knee pro-
cedures, depression, diabetes, history of cancer, hyper-
tension, chronic kidney disease, anaemia, coagulopathy, 
body mass index, arrhythmia, and peripheral vascular 
disease. There is also evidence that length of stay is corre-
lated with the readmission risk [21], but it did not receive 
a majority high-importance vote.

The Supplementary file, which has its own table of 
contents for ease of navigation, contains the full list of 
predictors (Tables S1–S3). Table S4 contains a list of all 
readmission prediction models developed in the primary 
analysis stage of this study. Table S5 depicts the amount 
of missingness in each variable.

Outcome evaluation
The majority of captured readmissions were to the index 
hospital where the TKA procedure took place. How-
ever, the registry captures some non-index institution 
readmissions based on patient self-report at the routine 
six-week follow-up appointment. Details of the data 
collection and quality control processes carried out to 
ensure accurate capture of readmissions in accordance 
with these criteria have been described previously [10].
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Model discrimination was measured using the area 
under the receiver operating characteristic curve (AUC-
ROC) [22]. A perfect classifier has an AUC-ROC of 1, 
while random guessing yields an AUC-ROC of 0.5.

Calibration was evaluated on the test set by visual 
inspection of the calibration curve [23] and numerical 
evaluation using the Integrated Calibration Index (ICI) 
[24]. A perfectly calibrated model has an ICI of 0.

Two existing 30-day readmission risk prediction mod-
els, LACE + score [25] and Ali et al. [26], were compared 
to the bespoke models developed in this study.

A logistic regression model, and a random forest 
model, trained on all predictors considered throughout 
the model development process were also developed and 
fully evaluated.

The predictability of the most common causes of read-
mission was also compared to the prediction of readmis-
sion as an independent outcome.

Patients with and without missing data for variables 
which had ≥ 10% missing data were also compared 
according to baseline demographics and readmission 
rate.

The best-performing model, in terms of discriminative 
performance, at initial consultation and discharge was a 
random forest model trained on systematic review pre-
dictors using the combined (registry + administrative) 
dataset. These models were fully evaluated in the Results 
section.

Analysis
All statistical analyses were performed using R (v4.1.1) 
[27]. The packages used are listed in Table  S6 (Supple-
mentary file).

To test the impact of the selected strategy for handling 
missing data on model performance, sensitivity analy-
ses were conducted using different strategies for vari-
ables with a large proportion of missing data. The initial 
consultation logistic regression model using systematic 
review variables had the best calibration of all readmis-
sion prediction models in this study.

Results
Figure  1 depicts a flowchart of patients included in the 
final analysis cohort. The date range was restricted to 
surgeries performed prior to 30 March 2020.

The readmission rate was 6.811%. Tables  1, 2 and 3 
contain summary statistics for predictors included in 
this study. Table  1 contains demographics and patient-
reported variables, Table  2 contains comorbidities, and 
Table 3 contains variables related to healthcare utilisation 
and the index of hospital admission.

Results for primary readmission prediction models
The training set performance of all models developed 
in the main readmission prediction model development 
process is contained in Table  S7 (Supplementary file). 
Comparison of baseline demographics and readmission 
rate for variables with ≥ 10% missingness-missing vs. 
non-missing are contained in Tables S8–S10. No varia-
bles had > 20% missing data. The initial consultation ran-
dom forest model achieved an AUC-ROC of 0.617 (95% 
CI 0.538–0.696). The discharge random forest model 
achieved an AUC-ROC of 0.692 (95% CI 0.621–0.764). 
ROC curves for these models evaluated on the test set 
are presented below (Figs. 2 and 3). Variable importance 
factors for these models are contained in Tables S11 and 
S12, along with training set ROC curves in Figs. S1 and 
S2 (Supplementary file).

Calibration curves for these models are presented 
below (Figs. 4 and 5). The initial consultation random for-
est model achieved an ICI of 0.031. The discharge random 
forest model achieved an ICI of 0.019. The appearance of 
these calibration curves indicates an overestimation of 
risk. Precision-recall curves (Figs. S3–S4) and additional 
performance metrics (Table  S13) are available for these 
models in the Supplementary file. The best-calibrated 
readmission prediction model was a logistic regression 
model trained on variables available in the administrative 
dataset at the initial consultation. These predictors were 
age, sex, hospital admissions and emergency presenta-
tions in the past 12  months, socioeconomic status, and 
the number of prior knee procedures. The ROC curve 
and calibration curve for this model are presented below 
(Figs.  6 and 7, respectively). AUC-ROC was 0.589 (95% 
CI 0.506–0.673), and ICI was 0.012. The full performance 
evaluation of this model is available in the Supplemen-
tary file (Figs. S5–S10, and Tables S14–S17).

AUC-ROC of 0.583 (0.545–0.620) was attributed to 
LACE + , while 0.563 (0.525–0.602) for its presented in 
Ali et al. [26]. ICI was exhibited in LACE + and Ali et al. 
[26] at 0.642 and 0.100, respectively. A full performance 
evaluation has also been performed (in Supplementary 
file): these previously developed models from prior lit-
erature (Figs. S11–S16, and Tables S18–S21), the random 
forest model trained on all predictor’s models (Figs. S17–
S28, and Tables S22–S28), and the logistic regression 
model trained on all predictors (Figs. S29–S36, Tables 
S29–S34).

Predictor summary statistics for the registry dataset 
not merged with administrative data are contained in the 
Supplementary file (Table  S35), along with the amount 
of missingness per variable (Table  S36) and the data-
set cohort creation flow diagram (Fig. S37). Full perfor-
mance evaluation of the random forest models trained 
on this dataset is also contained (Figs. S38–S45, and 
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Tables S37–S42). The complication-specific models dem-
onstrated comparable performance to the readmission 
prediction models, albeit generally with slightly better 
discriminative performance.

We also evaluated the outcome definitions and predic-
tors for each readmission-related complication from the 
literature (Table S43), causes of readmission in this study 
cohort (Table  S44), further information on outcome 
variable generation (Table  S45) and predictor variable 
generation (Tables S46–S51), predictor variable prepa-
ration and missingness (Table S52), comparison of base-
line characteristics for participants with ≥ 10% missing 
data for given variable (Table  S53). Baseline character-
istics were also compared for patients who experienced 
each complication, and those who did not (Tables S54–
S60). Full performance evaluations for all complication-
specific models are also contained (Figs. S46–S83, and 
Tables S61–S81).

The model developed using all study predictors for the 
combined outcome variable indicating any complication 
associated with readmission achieved an AUC-ROC of 
0.658 (0.570–0.746). This was an improvement over the 

readmission prediction models, however, discriminative 
performance still falls short of the commonly accepted 
AUC-ROC threshold of 0.7 [29]. The ROC curve for this 
model is presented below (Fig.  8). The best-calibrated 
complication-specific model was a logistic regression 
model which achieved an ICI of 0.012, indicating good 
calibration overall, but the calibration curve clearly 
shows an underestimation of risk at higher predicted 
probabilities. The calibration curve for this model is pre-
sented below (Fig. 9).

The training set AUC-ROC for the logistic regression 
model with all predictors was 0.677 with k-nearest neigh-
bours’ imputation, 0.655 for all predictors using data 
from 1 January 2006 onwards, and 0.677 for all predictors 
except for VR-12 scores.

Discussion
In summary, the discriminative performance of all mod-
els was poor, although machine learning models outper-
formed logistic regression to a small degree. However, 
the logistic regression model trained on administra-
tive data available in the clinical environment, using 

Fig. 1 Cohort generation flow diagram. (SMART registry: St Vincent’s Melbourne Arthroplasty Outcomes registry; KA: Knee Arthroplasty; TKA: Total 
Knee Arthroplasty; PAS: Patient Administration System)
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Table 1 Summary statistics and comparison between readmitted and non-readmitted patients: Demographics and patient-reported 
variables

Categorical variables were compared using the chi-squared test, or Fisher’s exact test in cases of counts below 10

SD Standard deviation, BMI Body mass index, SEIFA Socioeconomic Indexes for Areas [28], SES socioeconomic status
a Variable derived from SMART registry
b Variable derived from the administrative database
c  “How much did pain interfere with your normal work?”: One = Not at all; Two = A little bit; Three = Moderately; Four = Quite a bit; Five = Extremely
d Continuous variables were compared using Student’s t-test

Feature Non-readmitted 
cases (n = 3434)

Readmitted 
cases 
(n = 251)

P-valued

Demographics
  Agea, mean (SD) 69.539 (8.8) 69.956 (8.9) 0.472

  Sexa, % female 63.8% 61.0% 0.397

  BMIa, mean (SD) 33.1 (6.4) 34.3 (7.8) 0.017

  Smokinga 269 (7.8%) 21 (8.4%) 0.856

Low SES
 Pensioner card 1702 (49.6%)b 152 (60.6%) 0.001

 SEIFA score 0.045

  1 374 (10.9%)a 19 (7.6%)

  2 228 (6.6%)a 18 (7.2%)

  3 273 (8.0%)a 11 (4.4%)

  4 289 (8.4%)a 17 (6.8%)

  5 404 (11.8%)a 26 (10.4%)

  6 264 (7.7%)a 19 (7.6%)

  7 589 (17.2%)a 45 (17.9%)

  8 371 (10.8%)a 30 (12.0%)

  9 450 (13.1%)a 41 (16.3%)

  10 192 (5.6%)a 25 (10.0%)

Poor access to post-op care: lives far from hospital, lack of access to allied health support, lack of 
access to telehealth supporta

0.049

 Major cities in Australia 2645 (77.0%) 208 (82.9%)

 Inner regional Australia 649 (18.9%) 38 (15.1%)

 Outer regional or remote Australia 131 (3.8%) 4 (1.6%)

 Missing 9 (0.3%) 1 (0.4%)

Patient-related biopsychosocial: lower education level, poor health literacy, non-English speak-
ing

0.567

 Interpreter required 567 (16.5%)a 37 (14.7%)

 Missing 31 (0.9%) 5 (2.0%)

Patient-reported variables
 Preoperative patient-reported level of  functiona, mean (SD)

  Mental function 44.4 (15.1) 42.7 (16.3) 0.133

  Physical function 24.7 (7.8) 23.9 (7.5) 0.157

 Preoperative patient-reported pain  levelsc 0.330

  One 22 (0.6%) 1 (0.4%)

  Two 125 (3.6%) 6 (2.4%)

  Three 450 (13.1%) 26 (10.4%)

  Four 1375 (40.0%) 106 (42.2%)

  Five 960 (28.0%) 84 (33.5%)

  Missing 502 (14.6%) 28 (11.2%)



Page 7 of 15Gould et al. Arthroplasty            (2023) 5:30  

systematic review predictors available at an initial con-
sultation, was reasonably well calibrated. This is use-
ful because it suggests that interventions to mitigate or 
respond to readmission risk could be implemented at a 
much earlier point in time than at discharge following 
TKA surgery [30]. These findings are in keeping with 
prior literature demonstrating the difficulty of develop-
ing predictive models capable of distinguishing between 
readmitted and non-readmitted patients in various clini-
cal populations, especially following surgery and specifi-
cally TKA [5]. Comparable performance to the primary 
model development procedure was achieved in the sen-
sitivity analysis pertaining to different strategies for han-
dling missingness in the VR-12 data, providing support 
for the use of k-nearest neighbours imputation.

One particular type of machine learning which has 
received a large amount of attention in the literature per-
taining to the prediction of surgical outcomes, includ-
ing in orthopaedics and knee arthroplasty, specifically, is 
the deep learning [4]. This type of machine learning has 
demonstrated potential in terms of improved discrimina-
tive performance for outcomes post-TKA [4], however, it 

generally requires a high volume of complex data to fully 
unlock its potential [7]. In many cases, deep learning is 
not guaranteed to improve predictive performance com-
pared with other modelling techniques [31]. As data cap-
ture continues to expand in orthopaedics, it is possible 
there will be improvements in predictive performance, 
which in turn could improve the quality of a shared 
clinical decision-making [32]. One thing is clear: artifi-
cial intelligence and machine learning are here to stay in 
the orthopaedic field [32, 33]. It is important to temper 
expectations [34] and focus more on the human interac-
tion between patient and clinician as they work together 
to achieve the best possible surgical outcome [33].

Some risk factors were consistently associated with 
readmission. Presented in this section are the pre-
dictors with the largest regression coefficients in the 
LACE + model and the model developed by Ali et al. [26], 
compared with the strongest predictors in the bespoke 
models developed in this study. In both of these models, 
length of stay and number of prior emergency depart-
ment visits were among the top five strongest predictors. 
Length of stay was also consistently among the top five 

Table 2 Summary statistics and comparison between readmitted and non-readmitted patients: Comorbidities

Categorical variables were compared using the chi-squared test, or Fisher’s exact test in cases of counts below 10

SD Standard deviation, SEIFA Socioeconomic Indexes for Areas [28], IVDU Intravenous drug use, CKD Chronic kidney disease
a Variable derived from SMART registry
b Continuous variables were compared using Student’s t-test

Feature Non-readmitted cases (n = 3434) Readmitted cases (n = 251) P-valueb

Comorbidities
  Hypertensiona 2289 (66.7%) 165 (65.7%) 0.819

 Peripheral vascular  diseasea 129 (3.8%) 13 (5.2%) 0.337

  Diabetesa Diabetes = 757 (22.0%) Diabetes = 70 (27.9%) 0.080

Diabetes with end-organ damage = 15 (0.4%) Diabetes with end-organ dam-
age = 1 (0.4%)

  Coagulopathya 19 (0.6%) 0 0.636

 Charlson Comorbidity  Indexa Zero = 1780 (51.8%) Zero = 113 (45.0%) 0.026

One = 956 (27.8%) One = 70 (27.9%)

 ≥ Two = 698 (20.3%)  ≥ Two = 68 (27.1%)

  CHFa 100 (2.9%) 10 (4.0%) 0.334

 Liver  diseasea 85 (2.5%) 8 (3.2%) 0.528

  Depressiona 394 (11.5%) 36 (14.3%) 0.206

 Previous  strokea 209 (6.2%) 21 (8.4%) 0.191

  Anaemiaa 59 (1.7%) 9 (3.6%) 0.047

 History of  cancera 340 (9.9%) 31 (12.4%) 0.256

 High risk of infection: immunocompromised state, 
active IVDU, infection in other primary joint  replacementa

1466 (42.7%) 126 (50.2%) 0.024

  CKDa 125 (3.6%) 16 (6.4%) 0.039

  Arrhythmiaa 18 (0.5%) 0 0.630

 Pulmonary  diseasea 174 (5.1%) 23 (9.2%) 0.008

  Dementiaa 12 (0.3%) 0 1

 Substance  abusea 59 (1.7%) 3 (1.2%) 0.798
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strongest predictors in the models developed in the cur-
rent study, while the number of prior emergency depart-
ment visits was one of the strongest predictors in the 
initial consultation administrative database model that 
exhibited the best overall calibration. Older age was the 
other strongest predictor in the Ali et al. model, and age 
as a continuous predictor was also among the strongest 
predictors in the random forest models developed in the 
current study which demonstrated the best discrimi-
native performance. On the other hand, the remaining 
top predictors in the LACE + model were urgent admis-
sions in the previous year, Charlson Comorbidity Index, 
and the male sex. Charlson Comorbidity Index was also 
among the strongest predictors in the main random for-
est model developed using data available at the initial 

consultation in this study, with length of stay replacing 
it in the model developed using the same model archi-
tecture using predictors available at discharge. Admis-
sions in the past 12  months, though not specifically 
urgent admissions, was one of the strongest predictors 
in the initial consultation administrative database model 
that achieved the best overall calibration. Male sex was 
not a strong predictor in any of the models developed in 
this study. There were also newly identified predictors 
for readmission: number of historical knee procedures, 
socioeconomic status, and body mass index (BMI). There 
was evidence from the systematic review and meta-anal-
ysis [14] that these risk factors correlated with readmis-
sion, however, BMI and low socioeconomic status only 
received a majority vote of moderate importance in the 

Table 3 Summary statistics and comparison between readmitted and non-readmitted patients: Healthcare utilisation and index 
hospital admission

Categorical variables were compared using chi-squared test, or Fisher’s exact test in cases of counts below 10

SD Standard deviation, BMI Body mass index, SEIFA Socioeconomic Indexes for Areas [28], ED Emergency department, ICU Intensive care unit, HDU High dependency 
unit
a Variable derived from SMART registry
b Variable derived from administrative database
c Continuous variables were compared using Student’s t-test

Feature Non-readmitted cases 
(n = 3434)

Readmitted cases (n = 251) P-valuec

Prior healthcare utilisation
 Increasing number of previous  admissionsb Zero = 3223 (93.9%) Zero = 230 (91.6%) 0.234

One = 116 (3.4%) One = 10 (4.0%)

Two = 50 (1.5%) Two = 4 (1.6%)

 ≥ Three = 45 (1.3%)  ≥ Three = 7 (2.8%)

 Number of prior ED presentations (12 months)b Zero = 3298 (96.0%) Zero = 234 (93.2%) 0.083

One = 81 (2.4%) One = 11 (4.4%)

 ≥ Two = 55 (1.6%)  ≥ Two = 6 (2.4%)

 Historical knee  proceduresb Zero = 1234 (35.9%) Zero = 82 (32.7%)  < 0.001

One = 1324 (38.6%) One = 77 (30.7%)

Two = 760 (22.1%) Two = 51 (20.3%)

 ≥ Three = 116 (3.4%)  ≥ Three = 41 (16.3%)

Variables related to index hospital admission
 In-hospital complication (any) during index  admissiona 477 (13.9%) 76 (30.3%)  < 0.001

 ICU/HDU admission during index  admissionb Zero = 3303 (96.2%) Zero = 237 (94.4%) 0.109

One = 64 (1.9%) One = 4 (1.6%)

 ≥ Two = 67 (2.0%) Two = 10 (4.0%)

 Return to theatre during index  admissionb 10 (29.1%) 6 (2.4%)  < 0.001

 Length of stay in days, mean (SD)a 8.993 (4.4) 11.283 (8.9)  < 0.001

 Duration of operation in minutes, mean (SD)b 119.796 (34.5) 120.928 (36.3) 0.632

 Wound class (not clean)b 7 (20.4%) 0 1

 Transfusion during surgery in number of packed red blood cells, 
mean (SD)a

Zero = 3110 (90.6%) Zero = 212 (84.5%)  < 0.001

One = 63 (1.8%) One = 5 (1.0%)

Two = 206 (6.0%) Two = 21 (8.4%)

 ≥ Three = 55 (1.6%)  ≥ Three = 13 (5.2%)
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Fig. 2 ROC curve—initial consultation random forest model trained on systematic review predictors using the combined (registry + administrative) 
dataset

Fig. 3 ROC curve—discharge random forest model trained on systematic review predictors using the combined (registry + administrative) dataset
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Fig. 4 Calibration curve—initial consultation random forest model trained on systematic review predictors using the combined 
(registry + administrative) dataset

Fig. 5 Calibration curve—discharge random forest model trained on systematic review predictors using the combined (registry + administrative) 
dataset
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Fig. 6 ROC curve—initial consultation logistic regression model using systematic review predictors in the administrative dataset

Fig. 7 Calibration curve—initial consultation logistic regression model using systematic review predictors in the administrative dataset
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Fig. 8 ROC curve – discharge random forest model using all study predictors in the combined dataset to predict any complication associated with 
readmission

Fig. 9 Calibration curve – initial consultation logistic regression model using all study predictors in the administrative dataset to predict any 
complication associated with readmission
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Delphi survey, and the number of historical knee proce-
dures received a majority low importance vote [20].

Models trained on all predictors had similar perfor-
mance to primary study models. This suggests that using 
clinical insight instead of purely relying on statistical or 
machine learning predictor selection has value in terms 
of increasing clinical relevance/applicability without sac-
rificing predictive performance. The model trained only 
on clinical registry data also performed similarly to the 
primary models developed using both administrative and 
registry data.

The models developed in prior studies did not perform 
well on the datasets used in this study. These were the 
LACE + score [25] and the model developed by Ali et al. 
[26]. In accordance with Stessel et al. [35], compromises 
had to be made when applying these models because not 
all variables were available in the dataset used for this 
study and some proxy variables had to be generated based 
on what was available in the datasets used in this study. 
These models performed poorly on discrimination and 
calibration. These findings are in keeping with prior liter-
ature in which bespoke models have outperformed exist-
ing models such as LACE [36]. Important considerations 
when interpreting the poor performance of these models 
include the following: the current study was not a formal 
external validation study, there was incomplete variable 
availability, and both models were developed outside 
Australia (Ali et al. in the UK, LACE + in Canada), the Ali 
et al.’s model was developed for risk factor identification 
rather than prediction, and the LACE + model was not 
developed specifically for TKA patients.

The most common causes of readmission were iden-
tified from prior literature [37, 38]. These were surgical 
site infection, venous thromboembolism, joint-specific 
complications, gastrointestinal complications, cardiac 
complications, and infection (non-surgical site). Causes 
of readmission in this study cohort are listed in Table S44 
(Supplementary file). These outcome variables were 
generated based on definitions derived from the litera-
ture and the variables available in the data for each out-
come category. There are multiple advantages to using 
a general readmission prediction model implemented 
alongside complication-specific models. It enables the 
identification of patients with high readmission risk and 
can provide insight into their risk of specific complica-
tions. It also facilitates the identification of patients who 
are at high risk for readmission but not for any specific 
common cause. These readmissions might be unex-
pected from a clinical point of view but nonetheless can 
be anticipated and prepared for through post-discharge 
follow-up. In line with the readmission prediction model 
evaluation, the best-calibrated complication prediction 
model was described. This logistic regression model 

predicted any complication using all predictors in this 
study available in the administrative database at the ini-
tial consultation: sex, age, rurality, socioeconomic status, 
number of hospital admissions and emergency presenta-
tions in the past 12  months, and number of prior knee 
procedures.

The most well-calibrated models developed in this study, 
for both readmission prediction and prediction of compli-
cations associated with readmission, were developed using 
data captured routinely in the live clinical environment 
available at the initial consultation. This facilitates auto-
mated data processing by the predictive model. The result 
can be displayed to the patients and surgeons alongside the 
incidence for the whole cohort of patients at the institution 
to compare the patient’s risk to that of other patients. Well-
calibrated models that do not have strong discriminative 
performance can still be useful in shared decision-making, 
due to their ability to calculate individualised probabilistic 
estimates of readmission [39]. Provided here is an exam-
ple of how the model can be used in the process of shared 
clinical decision-making. Imagine there is a patient with 
a predicted probability of 0.33 for readmission, using the 
best-calibrated model developed for readmission in this 
study. The highest predicted probability calculated by this 
model is 0.4 (see the x-axis of Fig. 7), so a predicted prob-
ability of 0.33 is towards the higher end of possible individ-
ualised predicted probabilities. The clinician might opt to 
provide the percentage value, 33%, or a natural frequency, 
in this case, 1 in 3, to describe the predicted probability 
and explain that this is the proportion of patients just like 
them who would be readmitted following TKA surgery. 
They can inform the patient that this is almost five times 
as high as the average readmission rate for the cohort in 
this study, which was 6.8% or approximately 1 in 15. The 
patient and clinician can then decide whether they believe 
the patient’s discharge planning should include flagging 
them for additional follow-up at one or more checkpoints 
within the 30 days following discharge after TKA surgery 
[40]. The output of calibrated predictive models such as 
that developed in this study should not dictate decisions 
made between patient and clinician, but should instead 
empower both parties in the shared clinical decision-mak-
ing process which still requires intuition and consideration 
of the human elements that cannot be captured by a statis-
tical tool [41].

Strengths of this study include a comprehensive predic-
tor selection strategy which involved clinical input and 
machine learning while prioritising model parsimony. The 
model development, internal validation, and evaluation 
processes were in line with the guidelines [9]. The models 
were bespoke [36] and developed on a well-described and 
diverse clinical population which is demographically rep-
resentative of the broader Australian TKA population [10]. 
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Comprehensive information on the data used, as well as 
information required by readers to apply the models in dif-
ferent clinical settings or replicate this process to develop 
their own bespoke model [42], was provided. The cor-
responding author can also be contacted for information 
and clarification if necessary. The limitations of this study 
include that this was a single-institution study. The only 
way to fully capture non-index institution readmissions 
would be through linkage to external datasets. The main 
limitation was that the model does not have strong dis-
criminative performance, therefore it should not be used 
to distinguish between patients perceived to be at high risk 
of readmission in a binary manner. Rather, it can be used 
to inform decision-making given it was well-calibrated.

In order to improve the discriminative performance of 
the model, future work could focus on expanding data 
capture to facilitate the utilisation of strong predictors for 
readmission or associated complications in this patient 
population that are currently not captured in the data-
bases available for the development of predictive models. 
Before being deployed, the model will need to be pilot 
tested in the clinical environment to determine whether 
it can be implemented into existing workflows.

Conclusions
The discriminative performance of the readmission pre-
diction and complication prediction models was poor, 
although machine learning models had slightly better dis-
criminative performance than logistic regression models. 
The model developed using administrative data available 
at the initial consultation between the patient and ortho-
paedic surgeon was reasonably well calibrated. Models 
developed to predict complications commonly associated 
with readmission were also reasonably well-calibrated 
and can be used in conjunction with readmission predic-
tion models in shared clinical decision-making.
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