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Abstract 

Background This study aimed to compare the performance of ten predictive models using different machine learn‑
ing (ML) algorithms and compare the performance of models developed using patient‑specific vs. situational vari‑
ables in predicting select outcomes after primary TKA.

Methods Data from 2016 to 2017 from the National Inpatient Sample were used to identify 305,577 discharges 
undergoing primary TKA, which were included in the training, testing, and validation of 10 ML models. 15 predic‑
tive variables consisting of 8 patient‑specific and 7 situational variables were utilized to predict length of stay (LOS), 
discharge disposition, and mortality. Using the best performing algorithms, models trained using either 8 patient‑
specific and 7 situational variables were then developed and compared.

Results For models developed using all 15 variables, Linear Support Vector Machine (LSVM) was the most responsive 
model for predicting LOS. LSVM and XGT Boost Tree were equivalently most responsive for predicting discharge dis‑
position. LSVM and XGT Boost Linear were equivalently most responsive for predicting mortality. Decision List, CHAID, 
and LSVM were the most reliable models for predicting LOS and discharge disposition, while XGT Boost Tree, Deci‑
sion List, LSVM, and CHAID were most reliable for mortality. Models developed using the 8 patient‑specific variables 
outperformed those developed using the 7 situational variables, with few exceptions.

Conclusion This study revealed that performance of different models varied, ranging from poor to excellent, and 
demonstrated that models developed using patient‑specific variables were typically better predictive of quality met‑
rics after TKA than those developed employing situational variables.

Level of Evidence III.
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Introduction
Total knee arthroplasty (TKA) is a safe and effective 
treatment for end-stage osteoarthritis and is among 
the most common surgical procedures performed in 
the USA. National projections anticipate a substantial 
increase in TKA utilization and its associated economic 
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burden well into the foreseeable future [1]. As healthcare 
systems shift toward an increasing focus on value and 
patient satisfaction, there has been increased emphasis 
placed on risk stratification, perioperative optimization, 
and improving value in TKA care delivery [2–4]. As such, 
considerable effort has been put forth to develop models 
to predict clinical outcomes after TKA [5]. More recently, 
artificial intelligence and machine learning have been 
heavily explored as potential tools to improve the predic-
tive capacity of these models [6–8].

Machine learning (ML) is a subset of artificial intel-
ligence (AI) that automates analytical model building 
by employing algorithms to progressively “learn” and 
improve from data [9, 10]. As technological shifts in the 
healthcare system have allowed for the accumulation and 
organization of large amounts of data, ML has shown 
immense promise for numerous applications within 
healthcare system. Recent studies within the orthopedic 
literature have applied ML to develop models to predict 
mortality, readmission rates, complication rates, length 
of stay, and patient-reported postoperative outcomes [8, 
11–15]. Such predictive models have numerous potential 
benefits, including identifying patients at risk for worse 
outcomes, which allows for improved patient selection, 
targeted perioperative optimization, and stratification 
for risk-based alternative payment models. While these 
promising studies demonstrate the potential of ML to 
predict outcomes and improve value within orthopedics, 
they typically are limited in their choice of training vari-
ables and often employ a single elementary algorithm, 
without justification for the selection of either algorithm 
or variables. As a whole, there remains a critical need to 
develop and comparatively analyze the predictive capac-
ity of various ML algorithms and to identify and select 
the relevant input variables used to train these models.

In that context, the purpose of this study was to com-
paratively evaluate the performance of ten different 
machine learning models in predicting LOS, mortality, 
and discharge disposition following TKA and to compare 
the performance of the best performing models devel-
oped with patient-specific vs. situational variables.

Methods
Data source and study sample
The National Inpatient Sample, a public and expansive 
database containing data of more than 7 million hospital 
stays in the US for the years 2016 and 2017, was utilized 
for this retrospective analysis and ML model develop-
ment. Given the use of the International Classification of 
Disease, Tenth Revision (ICD-10) coding system in the 
database during the study period, the ICD-10-Procedure 
Coding System (ICD-10-PCS) for TKA was utilized to 
identify the study population (Additional file 1). Patients 

undergoing a conversion or revision TKA, younger than 
18 years of age, or missing age information were excluded 
from the study population. This strategy resulted in a 
total of 305,577 discharges that were included in the cur-
rent study.

Predictive and outcome variables selection
All available variables in the NIS database were con-
sidered and assessed for inclusion in this study. For the 
initial step of the study, 15 predictive variables were 
included in building and assessing ten different ML mod-
els, and subsequently divided, in the second step of the 
study, into 8 patient-specific (including Age, Sex, Race, 
Total number of diagnoses, All Patient Refined Diagnosis 
Related Groups (APRDRG) Severity of illness, APRDRG 
Mortality risk, Income zip quartile, Primary payer) and 7 
situational variables (including Patient Location, Month 
of the procedure, Hospital Division, Hospital Region, 
Hospital Teaching status, Hospital Bed size, and Hospi-
tal Control). These features were manually selected by 
the authors by screening from all available variables in 
the NIS database. The analysis outcome variables were 
in-hospital mortality (binary yes/no outcome), discharge 
disposition (home vs. facility), and length of stay (≤ 2 
vs. > 2) among primary TKA recipients. The determi-
nation of the LOS cutoff level was guided by analysis of 
the average LOS for the entire cohort, and subsequently 
utilizing the closest lower integral number to create the 
binary outcomes. Patient discharge destination was 
coded as either home (discharge to home or home health 
care) or facility (all other dispositions to a facility, such as 
skilled nursing facilities or inpatient rehabilitation cent-
ers). Patient datasets missing information on these vari-
ables were removed from the study sample.

Data handling and machine learning models development
SPSS Modeler (IBM, Armonk, NY, USA), a data min-
ing and predictive analytics software, was utilized to 
develop the models based on commonly used ML tech-
niques. The algorithmic methods implemented included 
Random Forest (RF), Neural Network (NN), Extreme 
Gradient Boost Tree (XGBoost Tree), Extreme Gradi-
ent Boost Linear (XGBoost Linear), Linear Support Vec-
tor Machine (LSVM), Chi square Automatic Interaction 
Detector (CHAID), Decision lists, Linear Discriminant 
Analysis (Discriminant), Logistic Regression, and Bayes-
ian Networks. These methods were selected as they are 
well-studied, commonly used ML methods in medical 
literature and are distinct in their pattern recognition 
methods (Table 1) [8–10, 12].

For each technique and for each outcome-variable, 
a new algorithm was developed. The overall data set 
was split using random sampling into three separate 
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groups: a training, testing, and validation cohort. A total 
of 80% of the data were used to train-test the models, 
while the remaining 20% was employed to validate the 
model parameters. The training–testing subset was sub-
sequently divided into 80% training and 20% testing, 
yielding a final distribution of 64% for training, 16% for 
testing, and 20% for model validation. In-between those 
phases, there were no leaks between the data sets, as 
mutually exclusive sets were used to train, test, and then 
validate each predictive algorithm.

When predicting outcomes with a low incidence rate, 
there exists a bias within the model, leading to an inac-
curate imbalance in predictive capacity biased against the 
minority outcome [16]. As such, and to avoid such impli-
cations, when imbalanced outcome frequencies were 
encountered, the Synthetic Minority Oversampling Tech-
nique (SMOTE) was deployed to resample the training 
set to avoid any implications on the training of the ML 
classification [17, 18]. Despite the validation of SMOTE, 
as a measure to successfully minimize the impact of the 

Table 1 Description of machine learning models

Machine Learning Models Description

Random Forest (RF) Qualitative algorithm using individual decision trees to generate a collective prediction. The 
strengths of this model are based on randomness utilizing methods such as bootstrapping, 
creating individual data sets through sampling, and bootstrap aggregating, otherwise known as 
bagging to shuffle individual variables each tree is trained. The algorithm works in a voting matter, 
so that the collective decision is supported by the number of individual trees that cast a vote

Neural Network (NN) Network based on the working layers of neurons programmed to interpret data based on the 
channels and their corresponding weight in the forward propagation of decision making. Back‑
propagation trains the neurons by comparing the output with the correct output to generate the 
appropriate weight of each channel

Extreme Gradient Boost Tree (XGBoost Tree) Expands on existing tree algorithms by further subtraining each tree in smaller subsets of data. 
The integration of small batch training strengthens an individual tree while the gradient boosting 
process uses the collective output from the trees. Gradient boosting builds upon sequential loss 
function to build the next generation of trees. This method occurs until the boosted ensemble can 
no longer improve upon the previous generation

Extreme Gradient Boost Linear (XGBoost Linear) Similar to XGBoost tree, however, its utility is in features with less data‑sets or low noise. The algo‑
rithm acts in a linear solution model with gradient boosting acting to build on the next rule until 
a rule can no longer improve upon the next generation. The speed is generally faster than that of 
XGBoost Tree, but accuracy is decreased if noise is high

Linear Support Vector Machine (LSVM) Classifies a dataset using a regression algorithm with a small learning datasets. The model aims to 
divide the dataset into two classes. Each data point represents a distinct point in the Nth dimen‑
sion of the hyperplane. LSVM maximizes the distances between the data points to determine the 
margin and to predict outcomes

Chi square Automatic Interaction Detector (CHAID) Model based on the statistical differences between parent and child nodes given qualitative 
descriptors. The development requires large datasets to determine how to best identify patterns 
to generate accurate predictions

Decision lists Boolean function model based on “if–then‑else” statements with all subsets having either a true 
or false functional value, which is also known as an ordered rule set. Rules in this form are usually 
learned with a covering algorithm, learning one rule at a time
The rules of this subset are tried in order unless no rule is induced, which pushes a default rule to 
be invoked

Linear Discriminant Analysis (Discriminant) Calculate summary statistics of data by means and standard deviations. Using a training data 
source, new predictions are made when data are added and class labels are given based on each 
input feature. This machine learning method assumes input variables are normally distributed and 
therefore have the same overall variance

Logistic Regression Similar to other linear regression models, but instead of solving for regression it acts to solve for 
classification. The input data sources can give a binary discrete value probability based on the 
independent variables of a given set. The benefit of logistic regression is its ability to classify obser‑
vations and determine the most efficient observation group for classification, which can then be 
used to identify the probabilities of new data sets to fit into that classification

Bayesian Networks Probabilistic graphical model of machine learning. They act to use a data source to identify prob‑
abilities for predictions, anomaly detections, and times predictions of an inputted data source. 
The data are computed into nodes which represent the variables that are linked to one another 
indicating their influence on one another. These links are a part of the structural learning and 
are identified automatically from the data. The data source can then be represented in graphical 
depictions called Asia networks making their data easy to understand following calculation
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bias, the classifier’s predictive ability in minority out-
comes is improved, however, it remains imperfect.

Statistical analysis
The comparative analysis of the different ML models con-
sisted of assessment of responsiveness and reliability of 
the predictions for all models. Responsiveness is a meas-
ure of successful prediction of variable outcomes and 
was quantified with area under the curve (AUC) for the 
receiver operating characteristic (ROC) curve. AUCROC 
measurements were generated by assessing true posi-
tive rates vs. false positive rates under the training, test-
ing, and validation phases of each model. For this study, 
responsiveness was considered as excellent for AUCROC 
was 0.90–1.00, good for 0.80–0.90, fair for 0.70–0.80, 
poor for 0.60–0.70, and fail for 0.50–0.60. Reliability of 
the ML models was measured by the overall performance 
accuracy quantified by the percentage of correct predic-
tions achieved by the model.

All ten ML models were trained, tested, and validated 
to assess responsiveness and reliability. The first step of 
the study aimed at analyzing and comparing the predic-
tive performance of these ML models in identifying the 
outcome variables after primary TKA: in-hospital mor-
tality, discharge disposition, and LOS. The validation 
phase utilizing 20% of the sample was considered as the 
main assessment metric and quantified with responsive-
ness and reliability. Once the development and com-
parative assessment of the different ML models were 
completed, the three algorithmic methodologies with the 
highest accuracy for each outcome variable were identi-
fied. The second step of the study consisted of develop-
ing and comparing the predictive performance of the top 
three ML methodologies for the same set of outcome 
measures while using patient-specific and situational pre-
dictive variables. All statistical analyses were performed 
with SPSS Modeler version 18.2.2 (IBM, Armonk, NY, 
USA).

Results
This study included a total of 305,577 discharges 
that underwent primary TKA with an average age of 
66.51  years. Descriptive statistics for the distributions 
of the aforementioned predictive variables are included 
in Table 2. The study population had an average of 0.1% 
mortality during hospitalization, a home discharge rate 
of 79.6%, and an LOS of 2.41 days.

For models developed using all 15 variables, the three 
most responsive models for LOS were LSVM, Neural 
Network, and Bayesian Network, with poor results meas-
uring 0.684, 0.668 and 0.664, respectively (Table 3). The 
three most reliable models for LOS were Decision List, 
LSVM, and CHAID. Decision List had a good reliability 

of 85.44%, while LSVM and CHAID had a poor reliabil-
ity of 66.55% and 65.63%, respectively. Figure 1 provides 
the ROC curves for the training, testing, and validation 
phases for the LSVM model predicting LOS. The three 
most responsive models for discharge disposition were 
LSVM, XGT Boost Tree, and XGT Boost Linear had fair 
performance with respective values of 0.747, 0.747, and 
0.722 (Table  4). The two most reliable models for dis-
charge yielding good reliability were Decision List and 
LSVM measuring 89.81% and 80.26% respectively, and 
the third most reliable one for discharge with fair results 
was CHAID at 79.80%. Figure 2 provides the ROC curves 
for the training, testing, and validation phases for the 
LSVM model predicting discharge disposition. The top 4 
models that yielded excellent responsiveness for in-hos-
pital mortality were LSVM, XGT Boost Linear, Neural 
Network, and Logistic Regression. with their values being 
0.997, 0.997, and 0.996, respectively (Table 5). The most 
reliable models, all with excellent reliability, for in-hospi-
tal mortality were XGT Boost Tree, Decision List, LSVM, 
and CHAID, with values of 99.98%, 99.91%, 99.89%, and 
99.89%, respectively. Figure  3 provides the ROC curves 
for the training, testing, and validation phases for the 
LSVM model predicting in-hospital mortality.

Separate models were then developed using the three 
most reliable algorithms for each outcome and their pre-
dictive performance was compared using either patient-
specific or situational variables. Tables 6 and 7 describe 
the performance of models developed with patient-spe-
cific variables and situational variables, respectively. For 
nearly all outcomes, responsiveness was higher for each 
algorithm when trained with patient-specific variables 
vs. situational variables, the only exception being CHAID 
having marginally better performance for predicting LOS 
when developed with situational variables. Similarly, 
reliability was higher for most algorithms when models 
were developed using patient-specific as opposed to situ-
ational variables, with the exception of higher reliability 
for CHAID for predicting LOS and Decision List for pre-
dicting discharge disposition when developed using situ-
ational variables, and equivalent reliability of XGT Boost 
Tree and LSVM for predicting mortality when developed 
using either patient-specific or situational variables.

Discussion
TKA is one of the most common procedures performed 
in the United States, with a considerable associated eco-
nomic burden. As healthcare systems continue to aim to 
optimize value of care delivery, there has been a growing 
focus on standardizing outcomes and establishing accu-
rate risk assessment prior to TKA [5, 19]. More recently, 
ML has been applied to develop models to predict out-
comes after TKA [8, 13, 14, 20]. As such, the aim of this 
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Table 2 Demographic variables of the study population

n = 305,577

Age of Patient in Years: Mean (Mean Standard Error) 66.51 (0.017)

Biological Sex of Patient
 Male 117,406 (38.4%)

 Female 188,068 (61.6%)

Primary Payor
 Medicare 174,756 (57.2%)

 Medicaid 13,334 (4.4%)

 Private insurance 106,410 (34.8%)

 Others 11,077 (3.6%)

Race of Patient
 White 237,015 (77.6%)

 African American 23,930 (7.8%)

 Hispanic 17,729 (5.8%

 Asian or Pacific Islander 4,484 (1.5%)

 Native American 1,243 (0.4%)

 Other or Unknown 21,176 (6.92%)

Median household income national quartile for patient ZIP Code
 0–25th percentile 67,060 (21.9%)

 26th to 50th percentile (median) 80,117 (26.2%)

 51st to 75th percentile 81,480 (26.7%)

 76th to 100th percentile 72,468 (23.7%)

 Unknown 4,452 (1.5%)

Bedsize of Hospital
 Small 91,630 (30%)

 Medium 87,561 (28.7%)

 Large 126,386 (41.4%)

Location/Teaching Status
 Rural 31,225 (10.2%)

 Urban Non‑teaching 88,872 (29.1%)

 Urban Teaching 185,480 (60.7%)

Region of hospital
 Northeast 53,637 (17.6%)

 Midwest 81,590 (26.7%)

 South 109,736 (35.9%)

 West 60,614 (19.8%)

Control/ownership of hospital (STRATA)
 Government, non‑federal 25,371 (8.3%)

 Private, not‑for‑profit 229,407 (75.1%)

 Private, investor‑owned 50,799 (16.6%)

Census Division of hospital
 New England 15,200 (5%)

 Middle Atlantic 38,437 (12.6%)

 East North Central 54,530 (17.8%)

 West North Central 27,060 (8.9%)

 South Atlantic 57,054 (18.7%)

 East South Central 20,712 (6.8%)

 West South Central 31,970 (10.5%)

 Mountain 23,494 (7.7%)

 Pacific 37,120 (12.1%)
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study was to develop and compare the performance of 
multiple ML models to predict in-hospital mortality, 
LOS, and discharge disposition after TKA and to com-
pare the performance of models trained using patient-
specific and situational variables.

Selecting an appropriate algorithm for training is criti-
cal in developing a predictive ML model. As the number 

of ML algorithms abounds, there has been a concerted 
effort within the medical literature to compare ML algo-
rithms to identify which are optimal for a given set of 
data and diseases [21, 22]. However, within the nascent 
orthopedic ML literature, different ML algorithms have 
been seldom compared when developing predictive mod-
els. Therefore, this study aimed to assess the performance 

Table 2 (continued)

n = 305,577

Patient Location: NCHS Urban–Rural Code
 Central counties of metro areas of  ≥1 million population 68,832 (22.5%)

 Fringe counties of metro areas of  ≥1 million population 77,277 (25.3%)

 Counties in metro areas of 250,000–999,999 population 67,499 (22.1%)

 Counties in metro areas of 50,000–249,999 population 32,350 (10.6%)

 Micropolitan counties 33,621 (11%)

 Not metropolitan or micropolitan counties 25,702 (8.4%)

 Unknown 296 (0.1%)

APRDRG Risk Mortality
 1‑ Minor likelihood of dying 252,204 (82.53%)

 2‑ Moderate likelihood of dying 45,567 (14.91%)

 3‑ Major likelihood of dying 6,529 (2.14%)

 4‑ Extreme likelihood of dying 1,275 (042%)

APRDRG Severity
 1‑ Minor loss of function (includes cases with no comorbidity or complications) 156,092 (51.08%)

 2‑ Moderate loss of function 134,776 (44.11%)

 3‑ Major loss of function 13,748 (4.5%)

 4‑ Extreme loss of function 959 (0.31%)

Number of Diagnosis (Mean Standard Error) 8.645 (0.009)

Month of Procedure
 January 26,732 (8.75%)

 February 25,452 (8.33%)

 March 25,874 (8.47%)

 April 23,742 (7.77%)

 May 25,437 (8.32%)

 June 26,219 (8.58%)

 July 21,861 (7.15%)

 August 25,585 (8.37%)

 September 23,868 (7.81%)

 October 28,356 (9.28%)

 November 27,730 (9.07%)

 December 24,657 (8.07%)

Died during hospitalization 87 (0.1%)

Disposition of patients
 Discharged to Home 109,511 (35.8%)

 Transfer to Short‑term Hospital 736 (0.2%)

 Transfer to Facility 60,768 (19.9%)

 Home Health Care (HHC) 133,989 (43.8%)

 Against Medical Advice (AMA) and Unknown 486 (0.2%)

Length of Stay (Mean Standard Error) 2.41 (0.003)
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Table 3 Responsiveness and reliability in predicting length of stay for the 10 models developed using all 15 variables

LOS

Reliability (Accuracy) Responsiveness (AUC)

Training Testing Validation Training Testing Validation

Random Forest 91.44% 60.86% 61.30% 0.94 0.632 0.636

Neural Network 62.81% 62.84% 62.79% 0.662 0.661 0.668

XGT Boost Tree 61.44% 61.40% 61.44% 0.619 0.615 0.61

XGT Boost linear 61.44% 61.40% 61.44% 0.603 0.6 0.595

LSVM 66.64% 66.84% 66.55% 0.689 0.689 0.684

CHAID 65.54% 65.41% 65.63% 0.665 0.665 0.663

Decision List 85.57% 85.39% 85.44% 0.59 0.593 0.59

Discriminant 59.29% 59.55% 59.12% 0.616 0.622 0.615

Logistic Regression 62.84% 62.87% 62.79% 0.662 0.662 0.661

Bayesian Network 62.99% 63.22% 63.03% 0.664 0.665 0.664

Fig. 1 ROC curves for the training, testing, and validation phases for the LSVM model predicting LOS

Table 4 Responsiveness and reliability in predicting discharge disposition for the 10 models developed using all 15 variables

Discharge

Reliability (Accuracy) Responsiveness (AUC)

Training Testing Validation Training Testing Validation

Random Forest 91.50% 74.25% 74.05% 0.955 0.671 0.675

Neural Network 75.62% 75.70% 75.53% 0.72 0.715 0.721

XGT Boost Tree 79.81% 79.81% 79.53% 0.749 0.741 0.747

XGT Boost linear 79.81% 79.81% 79.53% 0.719 0.715 0.722

LSVM 80.43% 80.43% 80.26% 0.745 0.742 0.747

CHAID 80.04% 80.02% 79.80% 0.712 0.711 0.713

Decision List 89.97% 90.03% 89.81% 0.648 0.647 0.648

Discriminant 64.49% 64.28% 64.35% 0.693 0.694 0.694

Logistic Regression 75.50% 75.63% 75.44% 0.716 0.713 0.718

Bayesian Network 75.14% 75.46% 75.13% 0.713 0.71 0.715
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of ten different ML models for prediction of LOS, mor-
tality, and discharge disposition after TKA. When com-
paring the different ML models using fifteen independent 
variables available in the NIS database, the LSVM meth-
odology was consistently the most responsive and reli-
able one, being within the top three best-performing 
ML models in predicting all tested outcomes. This result 
is not surprising, as support vector machine algorithms 
have consistently been one of the most widely used ML 
predictive algorithms [22]. Still, other studies in the gen-
eral medical literature have shown superior performance 
of other algorithms for the prediction of other outcomes 
[21–23]. As such, it should be noted that if different vari-
ables or outcomes are to be tested in a different study, it 
is possible that a different ML algorithm would be more 
effective and accurate within its predictive capacity. As 
clinical application of ML continues to evolve, it should 

be stressed that various ML methodologies should be 
tested prior to developing and deploying a model for clin-
ical use.

The selection of the optimal independent variables 
or features to train models is a cornerstone of super-
vised ML. Redundant variables can complicate mod-
els without increasing the predictive accuracy, while a 
deficiency of variables can oversimplify models without 
capturing the true complexity of a given use case. In 
the nascent TKA-related ML literature, there has typi-
cally been little justification for the variables selected to 
train models. Therefore, the predictive capacity of vari-
ous models trained with either patient-specific or situ-
ational variables were compared. As both patient-specific 
factors, such as age, and situational variables, such as 
hospital volume, have been shown to correlate with 
outcomes after TKA, this distinction would be useful 

Fig. 2 ROC curves for the training, testing, and validation phases for the LSVM model predicting discharge disposition

Table 5 Responsiveness and reliability in predicting mortality for the 10 models developed using all 15 variables

TKA Mortality

Reliability (Accuracy) Responsiveness (AUC)

Training Testing Validation Training Testing Validation

Random Forest 93.49% 93.49% 93.47% 0.941 0.687 0.749

Neural Network 93.47% 93.49% 93.47% 0.816 0.938 0.996

XGT Boost Tree 99.97% 99.97% 99.98% 0.921 0.839 0.954

XGT Boost linear 99.97% 99.97% 99.81% 0.982 0.938 0.997

LSVM 99.87% 99.89% 99.89% 0.981 0.944 0.997

CHAID 99.87% 99.89% 99.89% 0.978 0.901 0.991

Decision List 99.90% 99.90% 99.91% 0.845 0.925 0.871

Discriminant 86.61% 86.72% 86.39% 0.894 0.97 0.93

Logistic Regression 93.21% 93.26% 93.17% 0.86 0.932 0.996

Bayesian Network 93.47% 93.49% 93.47% 0.931 0.821 0.632
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for the development of future models for use in clinical 
practice. Our analysis demonstrated consistently better 
performance of models developed with the 8 patient-
specific variables when compared to models developed 
using 7 situational variables. These results, while stress-
ing the importance of patient-specific variables, also 
highlight the potential of a smaller number of variables 
to develop equivalent predictive models. A similar con-
cept was demonstrated recently in a study on heart fail-
ure patients that reported equivalent performance of an 
ML model using only 8 variables compared to one using 
a full set of 47 variables [24]. Continued research within 

the orthopedic literature on variable engineering and 
selection is critical, and identifying the most predictive 
variables will prove useful for the development of models 
that will be deployed to clinical practice.

There were several limitations to this study. The 
strength of ML models is dependent on the quality of the 
data used to train, test, and validate the algorithms, and 
administrative databases may be prone to incomplete-
ness and errors [25]. However, the NIS has been demon-
strated as an appropriate database to utilize for predictive 
large population-based studies and administratively-
coded comorbidity data has been previously validated 

Fig. 3 ROC curves for the training, testing, and validation phases for the LSVM model predicting in‑hospital mortality

Table 6 Responsiveness and reliability in predicting length of stay, discharge disposition, and mortality for the best performing three 
models when trained with patient‑specific variables only

Reliability (Accuracy) Responsiveness (AUC)

Training Testing Validation Training Testing Validation

LOS
 LSVM 64.19% 64.11% 63.98% 0.646 0.649 0.642

 CHAID 63.63% 63.83% 63.62% 0.634 0.634 0.63

 Decision List 85.64% 85.50% 85.45% 0.586 0.59 0.586

Discharge
 LSVM 80.03% 80.07% 79.83% 0.721 0.721 0.723

 CHAID 80.04% 80.02% 79.80% 0.706 0.707 0.708

 Decision List 89.88% 89.87% 89.59% 0.648 0.649 0.651

Mortality
 XGT Boost Tree 99.87% 99.89% 99.89% 0.851 0.883 0.888

 LSVM 99.87% 99.89% 99.89% 0.907 0.951 0.941

 Decision List 99.90% 99.90% 99.91% 0.845 0.925 0.871
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as accurate [26]. Another limitation is that the LOS out-
come was adjusted to be binary to simplify outcomes and 
provide more accurate analysis. These adjusted outcomes 
are useful in the setting of predictive ML at the expense 
of precise predictions. However, despite the continuous 
nature of LOS as a variable, when quality-improvement 
efforts are implemented in the clinical setting, the target 
for improvement in LOS is generally a binary cutoff, and 
so a binary predictive model has practical use. Another 
limitation is that the findings of this study were not 
externally validated. Although external validation was 
not within the scope of the study, efforts were made to 
internally validate the results, as the dataset was split into 
64% training, 16% testing, and 20% validating groups. 
The analysis of each phase was concurrent with all mod-
els with similar results, indicating the internal validity of 
the findings. Still, comparison with another data source 
would be useful to assess the generalizability of each ML 
model and the replicability of the findings in this study.

There were several strengths to this study. This study 
represents a novel attempt in the orthopedic literature 
to analyze a large variety of ML algorithms to develop 
the best-performing model. Our analysis of multiple ML 
algorithms generates insights into the performance of 
these various algorithms for multiple outcomes, which 
has seldom been encountered in the orthopedic litera-
ture. Additionally, by demonstrating the generally supe-
rior performance of models trained on patient-specific 
variables over situational variables, this study highlights 
the role that patient-specific factors play in determin-
ing critical quality outcome metrics within the available 
dataset. These insights should empower efforts aimed 
to influence both clinical practice and reimbursement 

models, which typically do not consider patient factors 
despite their demonstrably substantial impact on various 
quality metrics.

Conclusion
In summary, this study compared ten ML models devel-
oped using different algorithms to predict three impor-
tant quality metrics: mortality, LOS, and discharge 
disposition. Models developed using patient-specific 
variables performed better than models developed using 
situational variables. As the effort to develop ML models 
and identify which ML algorithms are optimal for a given 
set of conditions and outcomes, these results prove use-
ful in the development of predictive ML models for accu-
rate risk assessment and stratification for TKA.
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