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Abstract 

Background  Machine learning is a promising and powerful technology with increasing use in orthopedics. Peripros-
thetic joint infection following total knee arthroplasty results in increased morbidity and mortality. This systematic 
review investigated the use of machine learning in preventing periprosthetic joint infection.

Methods  A systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses guidelines. PubMed was searched in November 2022. All studies that investigated the clinical 
applications of machine learning in the prevention of periprosthetic joint infection following total knee arthroplasty 
were included. Non-English studies, studies with no full text available, studies focusing on non-clinical applications 
of machine learning, reviews and meta-analyses were excluded. For each included study, its characteristics, machine 
learning applications, algorithms, statistical performances, strengths and limitations were summarized. Limitations of 
the current machine learning applications and the studies, including their ‘black box’ nature, overfitting, the require-
ment of a large dataset, the lack of external validation, and their retrospective nature were identified.

Results  Eleven studies were included in the final analysis. Machine learning applications in the prevention of 
periprosthetic joint infection were divided into four categories: prediction, diagnosis, antibiotic application and 
prognosis.

Conclusion  Machine learning may be a favorable alternative to manual methods in the prevention of periprosthetic 
joint infection following total knee arthroplasty. It aids in preoperative health optimization, preoperative surgical 
planning, the early diagnosis of infection, the early application of suitable antibiotics, and the prediction of clinical 
outcomes. Future research is warranted to resolve the current limitations and bring machine learning into clinical 
settings.
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Background
Total knee arthroplasty (TKA) is a common procedure 
for severe knee osteoarthritis and other end-stage joint 
conditions. One complication of TKA is periprosthetic 
joint infection (PJI). The incidence of PJI ranges from 
1% to 2% following primary TKA [1]. This complication 
results in an increased cost of treatments, a prolonged 
hospital stay, an increase in pain, and an increase in mor-
bidity and mortality [2, 3]. Currently, machine learning 
(ML) is becoming a promising and powerful technology 
in the prevention of PJI as it may benefit the prediction, 
diagnosis, treatment and prognosis of PJI.

ML is a form of artificial intelligence. It may imitate 
human thinking and may even exceed human capabil-
ity [4]. To build a ML model, massive datasets and out-
comes could be split into a training set and a test set, and 
input into a computer (Fig.  1) [5]. Then, the computer 
may find an association between the data and generate 
an algorithm accordingly. Various hyperparameters could 
be adjusted to improve the algorithm’s performance [6]. 
The final algorithm could be used to generate decisions in 
future unseen datasets [5].

ML is a promising field with surging applications. 
Some ML models have been developed for the preven-
tion of PJI. A complete prevention strategy for PJI usu-
ally includes four key principles, i.e., early prediction, 
diagnosis, antibiotic application, and prognosis. The ML 
models built by Yeo et al. [7] and Kuo et al. [8] enabled 
early prediction and diagnosis of PJI respectively, allow-
ing for patient-specific surgical planning and detection 
of infection. Luftinger et  al. [9] reviewed multiple ML 
models for determining the antibiotic susceptibility sta-
tus of common PJI pathogens, allowing for an early pre-
scription of antibiotics for PJI management. Wouthuyzen 
et al. [10] reviewed an ML model that could predict out-
comes more accurately than two statistical risk scores for 

debridement, antibiotics and implant retention (DAIR). 
One of the common drawbacks of the models was the 
difficulty in interpreting the results. Although a few stud-
ies investigated the use of ML in the prevention of PJI, 
to our best knowledge, so far, no systematic reviews on 
the prevention of PJI covered all four aforementioned key 
principles.

This systematic review investigated the use of ML 
designed for prophylaxis of PJI. We also elaborated on 
and summarized the efficiency of the prevention strat-
egy based on the four key principles, i.e., early prediction, 
diagnosis, antibiotic application, and prognosis.

Materials and methods
Search and selection
A systematic review of the literature published from 2006 
to 2022 was conducted based on the Preferred Report-
ing Items for Systematic Reviews and Meta-Analyses 
guidelines [11]. PubMed was searched in November 2022 
using the following keywords: ‘periprosthetic joint infec-
tion’, ‘prosthetic joint infection’, ‘PJI’, ‘infection’, ‘artificial 
intelligence’, ‘AI’, ‘machine learning’, ‘ML’, ‘deep learning’, 
‘joint replacement’ and ‘arthroplasty’. References of eli-
gible studies were included in the search for additional 
results.

Two independent reviewers reviewed the studies. 
Discrepancies between the reviewers were resolved by 
comparing notes. All studies that examined the clini-
cal applications of ML in the prevention of PJI following 
TKA were included. Non-English studies, studies with no 
full text available, studies focusing on non-clinical appli-
cations of ML, reviews and meta-analyses were excluded. 
The retrieved studies were first screened for possible 
relevance to the review topic by reading the titles and 
abstracts. Then, full texts were perused to further con-
firm eligibility.

Fig. 1  Process of ML development
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Quality assessment
Two independent reviewers assessed the methodo-
logical quality by employing the National Institutes of 
Health quality assessment tool for case-control studies 
[12]. Discrepancies in the quality rating were resolved 
through discussion. The total quality score was calcu-
lated as the number of ‘yes’ over the number of ques-
tions, with questions answered with ‘not applicable’ 
excluded. The quality was rated as good (>75%), fair 
(50%–75%) or poor (<50%). The total score and quality 
rating are listed in Table 1.

Data extraction
Data extracted from each study consisted of three parts: 
(1) the characteristics of the studies, including the first 
author, the title, the journal of publication, the year of 
publication and the cohort size, (2) the details of the ML 
models, including their applications, algorithms and sta-
tistical performances and (3) the strengths and limita-
tions of the studies.

Results
The initial search identified 87 studies (Fig. 2). Seventy-
one studies were excluded after reading the titles and 
abstracts against the inclusion and exclusion criteria. 
Full texts were obtained and reviewed for the remaining 
16 studies. Five studies were removed, with 11 studies 
included for the final analysis [7, 8, 13–21]. The included 
studies targeted four areas of ML application: PJI pre-
diction, diagnosis, antibiotic application, and prognosis 
(Fig.  3). The features of the studies are summarized in 
Table  2, in terms of PJI prediction, diagnosis and prog-
nosis, and in Table 3 in terms of pathogens. The details 
of the ML models, strengths and limitations of the stud-
ies are summarized in Table 4 for PJI prediction, Table 5 
for PJI diagnosis, Tables  6 and 7 for PJI pathogens, and 
Table 8 for PJI prognosis. The two most common metrics 
used by the included studies to evaluate the performance 
of the ML models in the classification of individuals was 
the area under the receiver operating characteristic curve 

Table 1  Quality of the 11 studies included

First author [Ref.] Year Total score Quality rating

Yeo, I. [7] 2022 6/11 (54.5%) Fair

Kuo, F.C. [8] 2021 6/11 (54.5%) Fair

Tao, Y. [13] 2022 6/11 (54.5%) Fair

Davis, J.J. [14] 2016 8/11 (72.7%) Fair

Drouin, A. [15] 2019 7/11 (63.6%) Fair

Moradigaravand, D. [16] 2018 8/11 (72.7%) Fair

Nguyen, M. [17] 2018 7/11 (63.6%) Fair

Khaledi, A. [18] 2020 7/11 (63.6%) Fair

Aun, E. [19] 2018 7/11 (63.6%) Fair

Shohat, N. [20] 2020 6/11 (54.5%) Fair

Klemt, C. [21] 2021 6/11 (54.5%) Fair

Fig. 2  Preferred Reporting Items for Systematic Reviews and Meta-Analyses flowchart of our review process
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(AUC) and accuracy. The receiver operating character-
istics curve is a probability curve plotted with true posi-
tive rates against false positive rates. The AUC represents 
the degree of classification ability. The value of AUC 
ranges from 0 (poor model performance) to 1 (perfect 
model performance). The value of accuracy ranges from 
0% (poor performance) to 100% (perfect performance). 
Other common metrics used were the Brier score, F1 
score, sensitivity, specificity, calibration intercept and 
predictive value.

Prediction
Yeo et al. [7] used an artificial neural network to develop 
an ML model for the preoperative risk prediction of both 
superficial surgical site infection and PJI following TKA. 
About 10,000 primary TKA patients were included. The 
average follow-up time lasted for about 3 years. The 

patients’ demographic and operational variables were 
collected. The model performance was good, with an 
AUC of 0.84 and a Brier score of 0.054 (a Brier score 
close to zero indicates good accuracy of probabilistic pre-
diction). Several important variables for prediction were 
identified, including Charlson comorbidity score, obesity, 
smoking and diabetes.

Diagnosis
Kuo et al. [8] developed a diagnostic model using a two-
level stacked generalization architecture with a support 
vector machine as a meta-classifier. A small cohort of 323 
patients was included. The model performance in diag-
nosing chronic PJI was compared with that of the 2018 
European Bone and Joint Infection Society criteria. They 
applied an if-then rule and a decision diagram to visual-
ize the decision pathway of the ML model. With an AUC 
of 0.988, the model performed better than the criteria 
of the International Consensus Meeting (ICM) with an 
AUC of 0.958. The accuracy of the model was 96.4%. The 
model not only identified most of the common important 
features listed in the 2018 ICM criteria for PJI diagnosis 
but also considered additional important features, such 
as hemoglobin and prothrombin time, and set up differ-
ent baseline values for these features that were individu-
alized to each patient.

An ML model based solely on pathological informa-
tion is also available for diagnosing PJI. Using pathologi-
cal data, Tao et al. [13] trained a resNet34 deep-learning 
convolutional network model to diagnose PJI. The cohort 
comprised 20 revision total knee and hip arthroplasty 
patients from the Chinese People’s Liberation Army 
General Hospital, who were classified into infected and 

Fig. 3  Four areas of ML application in the prevention of PJI

Table 2  Characteristics of five studies on prediction, diagnosis and prognosis of periprosthetic joint infection

First author [Ref.] Articles Journal Year Number

Prediction
  Yeo, I. [7] The use of artificial neural networks for the prediction of 

surgical site infection following total knee arthroplasty
The Journal of Knee Surgery 2022 10021 patients

Diagnosis
  Kuo, F.C. [8] Periprosthetic joint infection prediction via machine learn-

ing: comprehensible personalized decision support for 
diagnosis

The Journal of Arthroplasty 2021 323 patients

  Tao, Y. [13] A preliminary study on the application of deep learning 
methods based on convolutional network to the pathologi-
cal diagnosis of periprosthetic joint infection

Arthroplasty 2022 20 patients (Training sets: 461 
positive images, 461 negative 
images)

Prognosis
  Shohat, N. [20] 2020 Frank Stinchfield Award: identifying who will fail 

following irrigation and debridement for prosthetic joint 
infection

The Bone & Joint Journal 2020 609 patients

  Klemt, C. [21] Machine learning models accurately predict recurrent infec-
tion following revision total knee arthroplasty for peripros-
thetic joint infection

Knee Surgery, Sports Trau-
matology, Arthroscopy

2021 618 patients
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non-infected based on the 2018 ICM guidelines. Frozen 
pathological sections collected were converted into elec-
tronic images with 461 positive and 461 negative images 
for model training.

Comparing the performance of the different ML mod-
els for PJI diagnosis, Kuo’s [8] model, which utilized a 
wide variety of demographic, biomedical, comorbidity, 
surgical and ICM-related data, demonstrated a greater 
performance in PJI diagnosis, yielding an AUC of 0.988 
and an accuracy of 96.4%. This was followed by Tao’s [13] 
model with an AUC of 0.814 and an average accuracy of 
93.3%. This might be due to a narrower and more spe-
cialized spectrum of data used by Tao’s model as com-
pared to Kuo’s. Nevertheless, both of them provide a new 
research direction for PJI diagnosis.

Antibiotic application
Staphylococcus aureus
Davis et al. [14] developed an adaptive boosting ML clas-
sifier for the prediction of methicillin resistance status in 
Staphylococcus aureus. A total of 606 bacterial genomes 
were collected from the Pathosystems Resource Integra-
tion Center database. The DNA k-mer counts were used 
to represent the antimicrobial resistance regions within a 
bacterial genome, and were then used to train the algo-
rithm, which resulted in an outstanding performance 
with an AUC of 0.991 and an accuracy of 99.5%, similar 
to the model developed by Drouin et al. [15], which dem-
onstrated a high accuracy of 98.7% for Staphylococcus 
aureus.

Enterococcus faecium
Drouin et  al. [15] developed a set covering machine 
model to predict the antibiotic susceptibility status of 
12 pathogens, including Staphylococcus aureus, Entero-
coccus faecium, Escherichia coli, Klebsiella pneumoniae 
and Pseudomonas aeruginosa, using 56 different antibi-
otics. The DNA k-mer counts were also extracted from 
the Pathosystems Resource Integration Center data-
base. The model had a very high accuracy of 100% for 
Enterococcus faecium. The model was also highly inter-
pretable and had a short computing time as a result of 
the implementation of the sample compression theory 
and the addition of some comprehensive tutorials that 
could guide users with no prior knowledge of ML to 
interpret the model.

Escherichia coli
Moradigaravand et  al. [16] trained a gradient-boosting 
decision tree as an ML model to predict the resistance of 
Escherichia coli to 11 common antibiotics. Data including 
gene contents, isolation year, population structure and 
information on polymorphism were collected from 1936 
whole genome sequencing samples of Escherichia coli 
strains for model training. The performance of the ML 
model was compared with that of a rule-based method 
developed in the same study, and the result demonstrated 
that the ML model, with an average accuracy of 91.0%, 
outperformed the rule-based method as well as the 
model developed by Drouin et al. [15], which achieved an 
accuracy of 81.8% for Escherichia coli.

Table 3  Characteristics of six studies on the pathogens of periprosthetic joint infection

First author [Ref.] Articles Journal Year Number and pathogens isolated

Davis, J.J. [14] Antimicrobial resistance prediction in 
pathosystems resource integration center 
and rapid annotation using subsystem 
technology

Scientific Report 2016 606 Staphylococcus aureus

Drouin, A. [15] Interpretable genotype-to-phenotype clas-
sifiers with performance guarantees

Scientific Report 2019 1593 Staphylococcus aureus, 134 Entero-
coccus faecium, 1524 Escherichia coli, 2107 
Klebsiella pneumoniae, 491 Pseudomonas 
aeruginosa

Moradigaravand, D. [16] Prediction of antibiotic resistance in Escheri-
chia coli from large-scale pan-genome data

PLoS Computational Biology 2018 1936 Escherichia coli

Nguyen, M. [17] Developing an in silico minimum inhibi-
tory concentration panel test for Klebsiella 
pneumoniae

Scientific Report 2018 1668 Klebsiella pneumoniae

Khaledi, A. [18] Predicting antimicrobial resistance in 
Pseudomonas aeruginosa with machine 
learning-enabled molecular diagnostics

EMBO Molecular Medicine 2020 414 Pseudomonas aeruginosa

Aun, E. [19] A k-mer-based method for the identifica-
tion of phenotype-associated genomic 
biomarkers and predicting phenotypes of 
sequenced bacteria

PLoS Computational Biology 2018 200 Pseudomonas aeruginosa
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Klebsiella pneumoniae
Drouin et al. [15] developed a model based on a binary 
phenotype classification, i.e., susceptible or resist-
ant, and achieved an accuracy of 95.0% for Klebsiella 
pneumoniae. In another study by Nguyen et  al. [17], 
the minimal inhibitory concentration (MIC) of Kleb-
siella pneumoniae was predicted by using a gradient-
boosting tree model to determine the level of antibiotic 
resistance. The model was trained on 1668 isolates and 
achieved an overall accuracy of 92.0%.

Pseudomonas aeruginosa
Using genomic sequences and transcriptional data from 
414 Pseudomonas aeruginosa samples, Khaledi et  al. 
[18] developed a support vector machine classifier for 
predicting the susceptibility of Pseudomonas aerugi-
nosa to four commonly used anti-pseudomonas antibi-
otics, including ceftazidime, meropenem, ciprofloxacin 
and tobramycin. The model achieved a high sensitiv-
ity and predictive value of 0.8–0.9 or > 0.9, which was 
comparable to the model of Drouin et  al. [15], with 
an accuracy of 93.9% for Pseudomonas aeruginosa. 
Although more and more studies have developed pre-
dictive models for different species, there is still little 
effort in developing software that provides easy acces-
sibility to the public who may not have high-standard 
computing hardware. Considering this, Aun et  al. [19] 
developed a simple software called ‘PhenotypeSeeker’ 
that used MIC values as well as binary phenotypes to 
determine Pseudomonas aeruginosa resistance to cip-
rofloxacin using two regression models. This method 
achieved an accuracy of 88.0%. K-mers of 200 genomes 
were collected to develop the model. With assembled 
genomes, the model could be built in less than 5 h per 
phenotype and could generate a phenotype prediction 
in just a second.

Prognosis
Shohat et  al. [20] developed a random forest analysis 
model to predict DAIR failure using the patients’ demo-
graphics, medical comorbidities, microbiology, opera-
tive findings and laboratory findings. The cohort of total 
knee and hip arthroplasty patients contained 609 TKA 
cases. Significant predictors for the knee cohort and 
early acute PJI patients were positive blood cultures and 
high C-reactive protein, whereas days of symptoms and 
immunosuppression were more significant in late acute 
PJI patients. The model performance was acceptable with 
an AUC of 0.74.

Another model targeting revision TKA (rTKA) fail-
ure rate was developed by Klemt et al. [21], who used an 
artificial neural network to predict recurrent PJI follow-
ing rTKA. The model was established by using 618 PJI 
cases with rTKA as the treatment. The model achieved 
an AUC of 0.84, a Brier score of 0.053 (close to zero indi-
cating good accuracy of the probabilistic prediction), and 
a calibration intercept of 0.06 (indicating a slight under-
estimation of the risk prediction). Irrigation and debride-
ment with or without modular component exchange 
during rTKA, more than four prior open surgeries, meta-
static disease and drug abuse were identified as statisti-
cally significant variables for the prediction.

Discussion
Prediction
In clinical practice, TKA patients at high risk of develop-
ing PJI are identified based on the presence or absence 
of risk factors. However, there is currently no universal 
guideline on this matter, and clinicians can only predict 
the risk of PJI based on their experiences. Whenever a 
patient’s condition is complex or the dataset is incom-
plete, the difficulty of prediction may increase, requir-
ing more time for an accurate prediction. The ML model 

Table 5  A summary on the details of ML, strengths and limitations of the studies on diagnosis of PJI

AUC​ Area under the receiver operating characteristic curve, ML Machine learning, PJI Periprosthetic joint infection

First author [Ref.] ML application Algorithm Statistical performance Strengths Limitations

Kuo, F.C. (2021) [8] A personalized PJI diag-
nosis

Two-level stacked gener-
alization architecture:
-Meta-classifier: Support 
vector machine;
-Base classifiers: Random-
forest, eXtreme gradient 
boosting, logistic regres-
sion, naïve bayesian

AUC: 0.988. Accuracy: 
96.4%. Recall: 0.981. F1 
score: 0.97. Matthews 
correlation -coefficient: 
0.926. Precision: 0.96

The performance outper-
formed that of Interna-
tional Consensus Meeting 
criteria; if-then rule was 
used for the explanation 
of the results

No external 
validation; small 
cohort size

Tao, Y. (2022) [13] PJI pathological diagnosis ResNet34 deep learning 
convolutional network

AUC: 0.8136. Average 
accuracy: 93.3%. Average 
recall rate: 0.9739. F1 
score: 0.9482

External validation was 
conducted

Small cohort size
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presented by Yeo et al. [7] may be a promising alternative 
to the manual risk prediction method.

Applying ML models in PJI prediction following TKA 
has several benefits: First, the early preoperative risk pre-
diction of PJI may assist in preoperative treatment deci-
sions by allowing patients to weigh potential risks against 
benefits [7]. Second, the ML model may assist in the pre-
operative optimization of the patient’s condition [22] by 
identifying and correcting modifiable high-risk variables 
prior to surgery. Third, the ML model may be able to 
identify relationships between variables even in a com-
plex and incomplete dataset. It may generate a prediction 
faster than a manual prediction, facilitating preoperative 
decision-making.

Diagnosis
To date, there is no universal definition of PJI. Nonethe-
less, a widely accepted definition has been introduced 
by the Musculoskeletal Infection Society, which was 
endorsed at the 2013 ICM. The strength of the defini-
tion was further enhanced in a new version formulated 
by the Musculoskeletal Infection Society in 2018 [23]. 
Yet, having a fixed list of criteria and being non-specific 
to individual cases, the definition may not be able to pro-
vide personalized diagnostic approaches. The ML model 
suggested by Kuo et al. [8] may be an alternative for PJI 
diagnosis as it could provide a patient-specific explana-
tion and aid in individualized decisions for PJI diagnosis. 
The decision diagram and the if-then rule used may also 
provide a more comprehensive explanation of the deci-
sion compared to the importance level presented by most 
other studies.

Currently, there is also no gold standard for patho-
logical PJI diagnosis. The 2018 ICM pathological cri-
teria [23] suggested that more than five neutrophils per 
high-power field observed in five high-power fields are 
needed for pathological diagnosis of PJI, whereas the 

European Bone and Joint Infection Society definition 
in 2021 [24] suggested that at least five neutrophils per 
high-power field observed in at least one high-power 
field are enough to suggest a possible PJI. The model sug-
gested by Tao et al. [13] may be an alternative approach 
with the following advantages: First, the ML model may 
avoid the controversy of neutrophil number and positive 
high-power field number, as the diagnosis does not rely 
on the neutrophil count alone. It is also accompanied by 
several infection indicators such as tissue edema, capil-
lary hyperplasia, neutrophil infiltration and prolifera-
tion. This could be a more comprehensive approach than 
the current pathological diagnostic criteria. Second, the 
ML method may be more accurate as it covers the entire 
pathological section and does not rely on the neutrophil 
count alone. In contrast, manual diagnostic methods only 
select suspected sections for recognition, which often 
omit pathological sections that may be infected, and only 
rely on the neutrophil count, which may be confused by 
the diverse morphology of neutrophils that may be simi-
lar to other inflammatory cells. Third, the ML method 
may shorten the time spent on pathological diagnosis. 
This is because  ML can process multiple images at the 
same time. It may also be more powerful at recognizing 
pathological features than the manual method, enabling 
early diagnosis and thus early surgical intervention for 
PJI. Lastly, pathological diagnosis by ML could be more 
objective than the manual method which heavily depends 
on pathologists’ experience in recognizing pathological 
features.

Antibiotic application
If a diagnosis of PJI is established, an antibiotic pre-
scription will be urgent. However, it was anticipated 
that antibiotic resistance would result in a decrease in 
the effectiveness of antibiotics [25]. In view of this, it is 
important to know the antimicrobial susceptibility status 

Table 8  A summary on the details of ML, strengths and limitations of the studies on prognosis of periprosthetic joint infection

ML Machine learning

First author [Ref.] ML application Algorithm Statistical 
performance

Strengths Limitations

Shohat, N. (2020) [20] Preoperative prediction 
of the risk of debride-
ment, antibiotics and 
implant retention failure

Random forest analysis Area under the receiver 
operating characteristic 
curve: 0.74

Important variables for 
the risk prediction were 
identified and expressed 
in a bar graph showing 
the relative importance 
value

No external validation

Klemt, C. (2021) [21] Preoperative prediction 
of the risk of recurrent 
periprosthetic joint 
infection following 
revision total knee 
arthroplasty

Artificial neural network Area under the receiver 
operating characteristic 
curve: 0.84. Brier score: 
0.053. Calibration inter-
cept: 0.06. Calibration 
slope: 1.09

Important variables for 
the risk prediction were 
identified and expressed 
in a bar graph showing 
the importance value

No external validation
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before prescribing antibiotics for PJI treatment. Cur-
rently, microbial resistance to antibiotics can be identi-
fied by several methods, each with its own downsides. 
First, culture-dependent antimicrobial susceptibility test-
ing, although commonly used, usually takes 12–48 h and 
is time-consuming [26]. For slow-growing microorgan-
isms, days to weeks may be needed. For non-culturable 
PJI pathogens, there may even be no results [9]. Second, 
another method is the polymerase chain reaction-based 
method, which is limited by the completeness of the 
database of known antimicrobial resistance marker genes 
[9]. An alternative approach may be the next-generation 
sequencing-based predictive antimicrobial susceptibility 
testing with an ML model [14–19]. Some of the ML mod-
els included in the analysis used the binary phenotype 
classification, i.e., susceptible or resistant [14–16, 18]. 
Another predicted outcome used was the MIC, which 
further assessed the degree of susceptibility status [17, 
19, 27].

Applying ML in the antibiotic prescription for PJI 
has several advantages: First, no prior knowledge of the 
resistance mechanism of the microbial strains is required 
to use the models [15–18], allowing for a more extensive 
application of the models. Second, the prediction could 
be generated in a short time, allowing for an early pre-
scription of antibiotics. Third, ML models may identify 
the antibiotic susceptibility status of non-culturable PJI 
pathogens, which are the causative pathogens in 5%–42% 
of PJI [28], hence allowing for a more effective treatment 
prescription.

Prognosis
Treatment options for PJI include DAIR, one- or two-
stage rTKA, arthrodesis and amputation [29]. Among 
them, DAIR and rTKA are the two most common 
choices, but the success rates of these treatments vary 
greatly. For acute postoperative PJI, DAIR has a failure 
rate of 0–69%, whereas for late chronic PJI, the failure 
rate is 38%–72% [30–41]. One-stage rTKA has a failure 
rate of 27% and the rate of two-stage is less than 10% 
[42–50]. To improve the prognosis after treatment, an 
early and correct decision on the treatment option, and 
preoperative optimization of the patient’s condition are 
important.

Currently, there is a guideline for DAIR recommen-
dation. However, the Infectious Diseases Society of 
America guideline published in 2013 may have multiple 
weaknesses, such as no separate guidance between early 
and late acute PJI, and little consideration of patient- and 
implant-related variables [51]. Alternatively, Shohat et al. 
[20] and Klemt et  al. [21] demonstrated that ML mod-
els could provide more comprehensive treatment guid-
ance than traditional guidelines. One special feature of 

Shohat’s [20] model is the separate analysis of the DAIR 
failure rate in early and late acute PJI patients given the 
reported difference in their failure rates [30–41]. The ML 
model developed by Klemt et al. [21] also out-performed 
a prior model with a conventional statistical approach 
[52].

Adapting ML models in prognostic prediction has 
several advantages: First, the prediction of treatment 
failure risk may assist clinicians and patients in mak-
ing early preoperative treatment decisions, to better 
allocate resources, with revision surgery reserved for 
patients at high risk and DAIR for patients at low risk. 
Second, an individualized prediction may lead to more 
patient-specific guidance than conventional guidelines 
due to the involvement of more patient-specific variables. 
Third, ML models allow for preoperative optimization of 
patients’ conditions, thereby reducing the failure rate by 
correcting modifiable risk factors prior to surgery. Lastly, 
the risk prediction may allow for early preparation for 
prescriptions, lengthened hospital stays, and subsequent 
treatment planning for possible treatment failure in high-
risk patients.

Limitations
While ML could be an effective tool for preventing PJI, it 
does have several practical limitations that restrict its use. 
First, ML algorithms have ‘black box problems’, meaning 
that their decision-making processes are not transpar-
ent, their results may not be interpretable, and their flaws 
may not be readily detectable [53]. It is therefore essen-
tial to evaluate and validate the algorithm extensively 
before putting it into clinical practice [54]. Second, ML 
algorithms are likely to overfit in imbalanced datasets. In 
the case of overfitting, an algorithm with high accuracy 
may not perform well when tested on an unseen dataset 
[5, 55]. Third, a large database with millions to trillions of 
data points may be required for training and testing [5], 
and a separate set of local training data has to be available 
to adapt the algorithm to a new population [56]. Hence, 
hospitals with small data sizes may need data sharing, 
which presents a problem of data protection and privacy 
infringement [57, 58]. With the emergence of massive 
databases, such as the National Inpatient Sample datasets 
and the American College of Surgeons-National Surgical 
Quality Improvement Program database, more abundant 
datasets will be available to facilitate future research on 
ML applications.

Although ML application is gaining more atten-
tion, there are research gaps to be bridged. The stud-
ies reviewed above were not of prospective nature and 
were not externally validated. There is also a paucity of 
research in PJI-related areas. Future studies on the AI-
based prediction of the risk of PJI with a longer follow-up 
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time are needed and should cover more commonly used 
antibiotics and pathogens in investigating the susceptibil-
ity of the microbes. In addition, most of the current mod-
els did not assess the impact of the severity of disease 
factors on the outcome [7, 8, 13–21]. For example, only 
the presence or absence of hypertension was examined 
for its association with PJI risk following primary TKA 
without taking into account the severity of hypertension. 
This provides a new direction for future research work.

Conclusion
Machine learning may be a favorable alternative to man-
ual methods in the prevention of PJI after TKA. It aids 
in preoperative patient optimization, preoperative surgi-
cal planning, early diagnosis of infection, early applica-
tion of suitable antibiotics, and the prediction of clinical 
outcomes. Although ML applications are potentially ben-
eficial to the prevention of PJI, some current limitations 
need to be overcome in order to ensure that ML is a non-
inferior or even superior option to manual approaches 
and, therefore, worth application in clinical settings.

Abbreviations
AUC​	� Area under the receiver operating characteristic curve
DAIR	� Debridement, antibiotics and implant retention
ICM	� International Consensus Meeting
MIC	� Minimum inhibitory concentration
ML	� Machine learning
PJI	� Periprosthetic joint infection
rTKA	� Revision total knee arthroplasty
TKA	� Total knee arthroplasty

Acknowledgements
The authors thank Mr. Leung Jeffrey Ho Yu for selecting eligible articles and 
conducting the quality assessment.

Authors’ contributions
Y.Y.C. (Conception, articles review and quality assessment, analysis, manu-
script writing); P.K.C. (Conception, revision comments provision); V.W.K.C., A.C., 
M.H.L., M.H.C., H.F., K.Y.C. (Revision comments provision). All authors read and 
approved the final manuscript.

Funding
Nil.

Availability of data and materials
All data analyzed during this study are included in this published article.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
All authors declare no competing interests.

Author details
1 Department of Orthopaedics and Traumatology, School of Clinical Medi-
cine, The University of Hong Kong, Hong Kong SAR, China. 2 Department 

of Orthopaedics and Traumatology, Queen Mary Hospital, Hong Kong SAR, 
China. 

Received: 30 December 2022   Accepted: 11 May 2023

References
	1.	 Ahmed SS, Haddad FS. Prosthetic joint infection. Bone Joint Res. 

2019;8(11):570–2.
	2.	 Zmistowski B, Karam JA, Durinka JB, Casper DS, Parvizi J. Periprosthetic 

joint infection increases the risk of one-year mortality. J Bone Joint Surg 
Am. 2013;95(24):2177–84.

	3.	 Premkumar A, Kolin DA, Farley KX, Wilson JM, McLawhorn AS, Cross MB, 
et al. Projected economic burden of periprosthetic joint infection of the 
hip and knee in the United States. J Arthroplasty. 2021;36(5):1484-9.e3.

	4.	 Deo RC. Machine learning in medicine. Circulation. 2015;132(20):1920–30.
	5.	 Choi RY, Coyner AS, Kalpathy-Cramer J, Chiang MF, Campbell JP. Introduc-

tion to machine learning, neural networks, and deep learning. Transl Vis 
Sci Technol. 2020;9(2):14.

	6.	 Kurmis AP, Ianunzio JR. Artificial intelligence in orthopedic surgery: evolu-
tion, current state and future directions. Arthroplasty. 2022;4(1):9.

	7.	 Yeo I, Klemt C, Robinson MG, Esposito JG, Uzosike AC, Kwon YM. The Use 
of artificial neural networks for the prediction of surgical site infection 
following TKA. J Knee Surg. 2023;36(6):637–43.

	8.	 Kuo FC, Hu WH, Hu YJ. Periprosthetic joint infection prediction via 
machine learning: comprehensible personalized decision support for 
diagnosis. J Arthroplasty. 2022;37(1):132–41.

	9.	 Luftinger L, Ferreira I, Frank BJH, Beisken S, Weinberger J, von Haeseler 
A, et al. Predictive antibiotic susceptibility testing by next-generation 
sequencing for periprosthetic joint infections: potential and limitations. 
Biomedicines. 2021;9(8):910.

	10.	 Wouthuyzen-Bakker M, Shohat N, Parvizi J, Soriano A. Risk scores and 
machine learning to identify patients with acute periprosthetic joints 
infections that will likely fail classical irrigation and debridement. Front 
Med (Lausanne). 2021;8:550095.

	11.	 Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, 
et al. The PRISMA 2020 statement: an updated guideline for reporting 
systematic reviews. BMJ. 2021;372:n71.

	12.	 Study quality assessment tools: NIH National Heart, Lung, and Blood Insti-
tute; 2021. https://​www.​nhlbi.​nih.​gov/​health-​topics/​study-​quali​ty-​asses​
sment-​tools. Accessed 28 Nov 2022.

	13.	 Tao Y, Hu H, Li J, Li M, Zheng Q, Zhang G, et al. A preliminary study on the 
application of deep learning methods based on convolutional network 
to the pathological diagnosis of PJI. Arthroplasty. 2022;4(1):49.

	14.	 Davis JJ, Boisvert S, Brettin T, Kenyon RW, Mao C, Olson R, et al. Antimicro-
bial resistance prediction in PATRIC and RAST. Sci Rep. 2016;6:27930.

	15.	 Drouin A, Letarte G, Raymond F, Marchand M, Corbeil J, Laviolette F. 
Interpretable genotype-to-phenotype classifiers with performance 
guarantees. Sci Rep. 2019;9(1):4071.

	16.	 Moradigaravand D, Palm M, Farewell A, Mustonen V, Warringer J, Parts L. 
Prediction of antibiotic resistance in Escherichia coli from large-scale pan-
genome data. PLoS Comput Biol. 2018;14(12):e1006258.

	17.	 Nguyen M, Brettin T, Long SW, Musser JM, Olsen RJ, Olson R, et al. 
Developing an in silico minimum inhibitory concentration panel test for 
Klebsiella pneumoniae. Sci Rep. 2018;8(1):421.

	18.	 Khaledi A, Weimann A, Schniederjans M, Asgari E, Kuo TH, Oliver A, et al. 
Predicting antimicrobial resistance in Pseudomonas aeruginosa with 
machine learning-enabled molecular diagnostics. EMBO Mol Med. 
2020;12(3):e10264.

	19.	 Aun E, Brauer A, Kisand V, Tenson T, Remm M. A k-mer-based method 
for the identification of phenotype-associated genomic biomarkers 
and predicting phenotypes of sequenced bacteria. PLoS Comput Biol. 
2018;14(10):e1006434.

	20.	 Shohat N, Goswami K, Tan TL, Yayac M, Soriano A, Sousa R, et al. 2020 
Frank Stinchfield Award: identifying who will fail following irriga-
tion and debridement for prosthetic joint infection. Bone Joint J. 
2020;102-B(7_Supple_B):11–9.

	21.	 Klemt C, Laurencin S, Uzosike AC, Burns JC, Costales TG, Yeo I, et al. 
Machine learning models accurately predict recurrent infection following 

https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools
https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools


Page 13 of 13Chong et al. Arthroplasty            (2023) 5:38 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

revision total knee arthroplasty for periprosthetic joint infection. Knee 
Surg Sports Traumatol Arthrosc. 2022;30(8):2582–90.

	22.	 Batailler C, Shatrov J, Sappey-Marinier E, Servien E, Parratte S, Lustig S. 
Artificial intelligence in knee arthroplasty: current concept of the avail-
able clinical applications. Arthroplasty. 2022;4(1):17.

	23.	 Parvizi J, Tan TL, Goswami K, Higuera C, Della Valle C, Chen AF, et al. The 
2018 definition of periprosthetic hip and knee infection: an evidence-
based and validated criteria. J Arthroplasty. 2018;33(5):1309-14.e2.

	24.	 McNally M, Sousa R, Wouthuyzen-Bakker M, Chen AF, Soriano A, Vogely 
HC, et al. The EBJIS definition of periprosthetic joint infection. Bone Joint 
J. 2021;103-B(1):18–25.

	25.	 Holmes AH, Moore LSP, Sundsfjord A, Steinbakk M, Regmi S, Karkey A, 
et al. Understanding the mechanisms and drivers of antimicrobial resist-
ance. Lancet. 2016;387(10014):176–87.

	26.	 van Belkum A, Bachmann TT, Ludke G, Lisby JG, Kahlmeter G, Mohess 
A, et al. Developmental roadmap for antimicrobial susceptibility testing 
systems. Nat Rev Microbiol. 2019;17(1):51–62.

	27.	 Kowalska-Krochmal B, Dudek-Wicher R. The minimum inhibitory 
concentration of antibiotics: methods, interpretation, clinical relevance. 
Pathogens. 2021;10(2):165.

	28.	 Kalbian I, Park JW, Goswami K, Lee YK, Parvizi J, Koo KH. Culture-negative 
periprosthetic joint infection: prevalence, aetiology, evaluation, recom-
mendations, and treatment. Int Orthop. 2020;44(7):1255–61.

	29.	 Springer BD, Parvizi J. Periprosthetic joint infection of the hip and knee. 
New York: Springer; 2013.

	30.	 Kuiper JW, Willink RT, Moojen DJ, van den Bekerom MP, Colen S. Treat-
ment of acute periprosthetic infections with prosthesis retention: review 
of current concepts. World J Orthop. 2014;5(5):667–76.

	31.	 Laffer RR, Graber P, Ochsner PE, Zimmerli W. Outcome of prosthetic knee-
associated infection: evaluation of 40 consecutive episodes at a single 
centre. Clin Microbiol Infect. 2006;12(5):433–9.

	32.	 Rasul AT Jr, Tsukayama D, Gustilo RB. Effect of time of onset and depth 
of infection on the outcome of total knee arthroplasty infections. Clin 
Orthop Relat Res. 1991;273:98–104.

	33.	 Rodríguez D, Pigrau C, Euba G, Cobo J, García-Lechuz J, Palomino J, 
et al. Acute haematogenous prosthetic joint infection: prospective 
evaluation of medical and surgical management. Clin Microbiol Infect. 
2010;16(12):1789–95.

	34.	 Theis JC, Gambhir S, White J. Factors affecting implant retention in 
infected joint replacements. ANZ J Surg. 2007;77(10):877–9.

	35.	 Tintle SM, Forsberg JA, Potter BK, Islinger RB, Andersen RC. Prosthesis 
retention, serial debridement, and antibiotic bead use for the treatment 
of infection following total joint arthroplasty. Orthopedics. 2009;32(2):87.

	36.	 Vilchez F, Martínez-Pastor JC, García-Ramiro S, Bori G, Tornero E, García E, 
et al. Efficacy of debridement in hematogenous and early post-surgical 
prosthetic joint infections. Int J Artif Organs. 2011;34(9):863–9.

	37.	 Qasim SN, Swann A, Ashford R. The DAIR (debridement, antibiotics and 
implant retention) procedure for infected total knee replacement - a 
literature review. SICOT J. 2017;3:2.

	38.	 Geurts JA, Janssen DM, Kessels AG, Walenkamp GH. Good results in 
postoperative and hematogenous deep infections of 89 stable total hip 
and knee replacements with retention of prosthesis and local antibiotics. 
Acta Orthop. 2013;84(6):509–16.

	39.	 Gardner J, Gioe TJ, Tatman P. Can this prosthesis be saved?: implant 
salvage attempts in infected primary TKA. Clin Orthop Relat Res. 
2011;469(4):970–6.

	40.	 Chiu FY, Chen CM. Surgical débridement and parenteral antibiot-
ics in infected revision total knee arthroplasty. Clin Orthop Relat Res. 
2007;461:130–5.

	41.	 Silva M, Tharani R, Schmalzried TP. Results of direct exchange or debride-
ment of the infected total knee arthroplasty. Clin Orthop Relat Res. 
2002;404:125–31.

	42.	 Zywiel MG, Johnson AJ, Stroh DA, Martin J, Marker DR, Mont MA. Pro-
phylactic oral antibiotics reduce reinfection rates following two-stage 
revision total knee arthroplasty. Int Orthop. 2011;35(1):37–42.

	43.	 Bengtson S, Knutson K. The infected knee arthroplasty. A 6-year follow-up 
of 357 cases. Acta Orthop Scand. 1991;62(4):301–11.

	44.	 Booth RE Jr, Lotke PA. The results of spacer block technique in revision of 
infected total knee arthroplasty. Clin Orthop Relat Res. 1989;248:57–60.

	45.	 Goldman RT, Scuderi GR, Insall JN. 2-stage reimplantation for infected 
total knee replacement. Clin Orthop Relat Res. 1996;331:118–24.

	46.	 Haleem AA, Berry DJ, Hanssen AD. Mid-term to long-term followup of 
two-stage reimplantation for infected total knee arthroplasty. Clin Orthop 
Relat Res. 2004;428:35–9.

	47.	 Insall JN, Thompson FM, Brause BD. Two-stage reimplantation for the 
salvage of infected total knee arthroplasty. J Bone Joint Surg Am. 
1983;65(8):1087–98.

	48.	 Segawa H, Tsukayama DT, Kyle RF, Becker DA, Gustilo RB. Infection after 
total knee arthroplasty. A retrospective study of the treatment of eighty-
one infections. J Bone Joint Surg Am. 1999;81(10):1434–45.

	49.	 Park SJ, Song EK, Seon JK, Yoon TR, Park GH. Comparison of static and 
mobile antibiotic-impregnated cement spacers for the treatment of 
infected total knee arthroplasty. Int Orthop. 2010;34(8):1181–6.

	50.	 Mortazavi SM, Molligan J, Austin MS, Purtill JJ, Hozack WJ, Parvizi J. Failure 
following revision total knee arthroplasty: infection is the major cause. Int 
Orthop. 2011;35(8):1157–64.

	51.	 Osmon DR, Berbari EF, Berendt AR, Lew D, Zimmerli W, Steckelberg JM, 
et al. Diagnosis and management of prosthetic joint infection: clinical 
practice guidelines by the Infectious Diseases Society of America. Clin 
Infect Dis. 2013;56(1):e1–25.

	52.	 Klemt C, Tirumala V, Smith EJ, Padmanabha A, Kwon YM. Development of 
a preoperative risk calculator for reinfection following revision surgery for 
periprosthetic joint infection. J Arthroplasty. 2021;36(2):693–9.

	53.	 Price WN. Big data and black-box medical algorithms. Sci Transl Med. 
2018;10(471):eaao5333.

	54.	 Topol EJ. High-performance medicine: the convergence of human and 
artificial intelligence. Nat Med. 2019;25(1):44–56.

	55.	 Hinterwimmer F, Lazic I, Langer S, Suren C, Charitou F, Hirschmann MT, 
et al. Prediction of complications and surgery duration in primary TKA 
with high accuracy using machine learning with arthroplasty-specific 
data. Knee Surg Sports Traumatol Arthrosc. 2023;31:1323–33.

	56.	 Kelly CJ, Karthikesalingam A, Suleyman M, Corrado G, King D. Key chal-
lenges for delivering clinical impact with artificial intelligence. BMC Med. 
2019;17(1):195.

	57.	 Gerke S, Minssen T, Cohen G. Ethical and legal challenges of artificial intel-
ligence-driven healthcare. In: Bohr A, Memarzadeh K, editors. Artificial 
intelligence in healthcare. Massachusetts: Academic; 2020. p. 295–336.

	58.	 Purnomo G, Yeo S-J, Liow MHL. Artificial intelligence in arthroplasty. 
Arthroplasty. 2021;3(1):37.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Application of machine learning in the prevention of periprosthetic joint infection following total knee arthroplasty: a systematic review
	Abstract 
	Background 
	Methods 
	Results 
	Conclusion 

	Background
	Materials and methods
	Search and selection
	Quality assessment
	Data extraction

	Results
	Prediction
	Diagnosis
	Antibiotic application
	Staphylococcus aureus
	Enterococcus faecium
	Escherichia coli
	Klebsiella pneumoniae
	Pseudomonas aeruginosa

	Prognosis

	Discussion
	Prediction
	Diagnosis
	Antibiotic application
	Prognosis
	Limitations

	Conclusion
	Acknowledgements
	References


