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Abstract 

Background The purpose of the study was to use Machine Learning (ML) to construct a risk calculator for patients 
who undergo Total Joint Arthroplasty (TJA) on the basis of New York State Statewide Planning and Research Coopera-
tive System (SPARCS) data and externally validate the calculator on a single TJA center.

Methods Seven ML algorithms, i.e., logistic regression, adaptive boosting, gradient boosting (Xg Boost), random 
forest (RF) classifier, support vector machine, and single and a five-layered neural network were trained on the deriva-
tion cohort. Models were trained on 68% of data, validated on 15%, tested on 15%, and externally validated on 2% 
of the data from a single arthroplasty center.

Results Validation of the models showed that the RF classifier performed best in terms of 30-d mortality AUROC 
(Area Under the Receiver Operating Characteristic) 0.78, 30-d readmission (AUROC 0.61) and 90-d composite compli-
cations (AUROC 0.73) amongst the test set. Additionally, Xg Boost was found to be the best predicting model for 90-d 
readmission and 90-d composite complications (AUC 0.73). External validation demonstrated that models achieved 
similar AUROCs to the test set although variation occurred in top model performance for 90-d composite complica-
tions and readmissions between our test and external validation set.

Conclusion This was the first study to investigate the use of ML to create a predictive risk calculator from state-wide 
data and then externally validate it with data from a single arthroplasty center. Discrimination between best perform-
ing ML models and between the test set and the external validation set are comparable.

Level of Evidence III.

Keywords Machine learning, External validation, Total joint arthroplasty, Database, Complications

Introduction
Orthopaedic procedures involving total hip and knee 
replacement categorically account for the largest annual 
expenditures by Medicare by specialty and procedures, 
respectively [1–3]. Consequently, the Centers for Medi-
care and Medicaid Services (CMS) instituted the Com-
prehensive Care for Joint Replacement (CJR) model. 
CJR reduced costs and readmissions while potentially 
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exacerbating disparities in the access to total joint arthro-
plasty (TJA) in some but not all centers [4–6]. The poten-
tial disparities in TJA access may have arisen, in part, due 
to an aversion to certain high-risk patient populations by 
some centers participating in the CJR model [7]. High-
risk TJA patients are associated with increased resource 
demands, increased costs, and decreased reimbursement 
[8–10]. Therefore, the ability to identify patients who may 
be at a higher risk of poor outcomes following TJA may 
allow for resource reallocation to reduce this risk.

Artificial intelligence (AI) and machine learning 
(ML) algorithms can pattern the interactions of vari-
ables within datasets to create predictive models [11, 
12]. Machine learning in medicine and orthopaedics has 
begun to take hold in the past five years, as manifested 
by publications specifically related to ML in TJA [13]. 
Successful creation of accurate preoperative risk calcula-
tors using ML algorithms would let providers preopera-
tively identify patients who may be at increased risk for 
poor outcomes following TJA. The ability to preopera-
tively predict increased risk would provide two potential 
opportunities. The first is the optimization of modifiable 
risk factors that may lower the cost of care [14]. The sec-
ond is the ability to risk stratify reimbursement and rec-
oncile current disparities in TJA access.

The performance of ML prediction models is directly 
proportional to the degree of data quality and quantity. 
Previous ML studies in TJA prediction models have 
been conducted using both “big” national databases and 
single center registries to predict outcomes, including 
discharge disposition, complications, mortality, satisfac-
tion, and minimally important clinical differences fol-
lowing TJA [15–18]. While utilization of “big” databases 
provides ML algorithms access to the large patient vol-
umes and variables necessary for ML algorithm training 
and model accuracy, these datasets present challenges. 
A specific challenge with “big” datasets is that vari-
ables, such as population diversity, changes in medical 
practice patterns, healthcare policy differences between 
states, and geographic data used to train the ML algo-
rithms, create models that to date are of questionable 
clinical utility when applied to any specific patient. This 
point was highlighted by Harris et  al., who concluded 
that “models previously developed with VASQIP (Veter-
ans Affairs Surgical Quality Improvement Program) data 
had poor accuracy when externally validated with NSQIP 
(National Surgical Quality Improvement Program) data, 
suggesting that they should not be used outside the con-
text of the Veterans Health Administration” [17]. Single 
center registries are a potential alternative to train ML 
algorithms using datasets that more closely represent the 
TJA patients who will prospectively undergo risk factor 
stratification with the trained model. While single-center 

registries overcome the limitations associated with “big” 
datasets, they may not contain the necessary patient vol-
umes required to train ML algorithms, ultimately leading 
to models suffering from the same questionable clini-
cal utility as those derived from “big” data. As a case in 
point, many authors do not achieve an AUROC > 0.8. and 
we are aware of only one attempt to externally validate a 
model [17].

Therefore, to overcome some of the limitations pre-
viously mentioned in both single center registries and 
many “big” datasets, we aimed to use the New York State 
(NYS) Statewide Planning and Research Cooperative Sys-
tem (SPARCS) all-payer administrative database to train 
ML models for 30- and 90-day readmissions and 90-day 
composite complications following TJA. For this particu-
lar study, the SPARCS dataset stands out as a superior 
resource among large healthcare datasets due to its com-
prehensive and consistent data collection methodology. 
Unlike other datasets that rely on random sampling or 
limited enrollment, SPARCS mandates that every health-
care facility (inpatient and outpatient) within NYS con-
sistently contribute its data. This approach ensures the 
inclusion of the entirety of NYS’s healthcare landscape, a 
crucial factor for research and analysis conducted within 
the geographic region of our center [17]. One of the key 
strengths of SPARCS lies in its ability to capture the 
entire population. By encompassing data from all health-
care facilities in the state, it minimizes the risk of sam-
pling bias that can be introduced by random sampling or 
enrollment-based datasets (e.g., a patient receiving sur-
gery in hospital A is included in the database but is read-
mitted to hospital B not included in the database). The 
potential for substantial demographic differences across 
states is a concern often encountered when working with 
datasets that exclude certain hospitals or regions. NYS 
SPARCS effectively mitigates this concern, as it offers a 
comprehensive snapshot of the healthcare experiences 
and outcomes within the entire New York State popula-
tion. Because SPARCS has coded individual hospitals 
within its all-payer dataset, we would identify and exter-
nally validate 90-day complications, 30-day mortality, and 
30- & 90-day readmissions of our primary single arthro-
plasty center, against a model trained from SPARCS data. 
We hypothesized that externally validated models from 
our primary arthroplasty center (PAC) would demon-
strate similar performance compared to internally vali-
dated models.

Methods
Data source
This study was a retrospective review of the NYS 
SPARCS database. Developed in 1979, the SPARCS 
database is a de-identified, all-payer, patient-specific 



Page 3 of 12Shaikh et al. Arthroplasty            (2023) 5:58  

database maintained by the NYS Department of Health. 
State legislature requires that all NYS hospitals, ambula-
tory surgery centers, emergency departments, outpatient 
hospital-extension clinics, as well as diagnostic and treat-
ment centers should periodically report data to compile 
the extensive database. Information reported includes 
patient-level data on characteristics (e.g., demographics, 
BMI, etc.), diagnostic and surgical codes, services pro-
vided, charges incurred and hospital as well as provider 
identifiers. By assigning each patient a unique identifier, 
the database can provide reliable data with a high degree 
of continuity of an individual patient’s care across hospi-
tal systems statewide (e.g., readmissions). More informa-
tion can be found at https:// www. health. ny. gov/ stati stics/ 
sparcs/.

Study population
Following approval by our Institutional Review Board, the 
SPARCS database was queried for all patients who under-
went elective total hip or knee arthroplasty between 1 
January 2012 and 31 December 2016. We used the Cent-
ers for Medicare and Medicaid Services (CMS) algorithm 
and ICD-9 and ICD-10 procedure codes for identifying 
the cohort of interest [18]. We employed ICD-9 and ICD-
10 diagnosis and procedure codes specified by CMS to 
exclude patients undergoing joint replacements for frac-
tures, revision/resurfacing/removal of implanted devices 
or prostheses, mechanical complications, malignant neo-
plasms, and partial hip replacements. The benefit of the 
SPARCS database is the comprehensive catchment of all 
cases performed in New York State regardless of payer. 
Additionally, each patient has a unique identifier allow-
ing the patient to be tracked across hospital readmissions 
at different institutions within the state. Patient-level data 
were linked to the American Hospital Association (AHA) 
Annual Survey database to obtain hospital characteristics 
(community or teaching hospital, hospital size, urban/
rural, geographic location, and hospital ownership) for 
inclusion in the models.

Explanatory variables/predictors
Baseline demographics were collected, including age, 
sex, race, ethnicity, zip code, anatomic site (hip or knee), 
hospital identifier, admission source, diagnosis code, 
discharge destination, payer source (Medicare versus 
commercial insurance), year of surgery, and method of 
anesthesia. Comorbidity indicators were defined using 
the Elixhauser’s Comorbidity Index (Table 1).

Outcomes
Primary outcomes of interest included 90-day compli-
cations, 30-day mortality, and 30- & 90-day all-cause 
readmissions following total hip and knee arthroplasty. 

Table 1 Descriptive characteristics

Descriptive

N (%) 247,875 (100.00)

Sex, N (%)
 Female 151,086 (60.95)

 Male 96,789 (39.05)

Race, N (%)
 White 192,404 (77.62)

 Black 23,522 (9.49)

 Other 31,949 (12.89)

Primary Payor, N (%)
 Private 117,455 (47.38)

 Medicare 111,824 (45.11)

 Medicaid 5,994 (2.42)

 Other Federal 1,100 (0.44)

 Other 11,502 (4.64)

Admission Type, N (%)
 Emergent 2,751 (1.11)

 Urgent 2,793 (1.13)

 Elective 242,211 (97.71)

 Other 120 (0.05)

Source of Admission, N (%)
 Health Facility 38,944 (15.71)

 Non-Health Facility 208,931 (84.29)

Anesthesia Method, N (%)
 No Anesthesia 75,426 (30.43)

 General Anesthesia 73,713 (29.74)

 Regional Anesthesia 88,616 (35.75)

 Other Anesthesia 10,120 (4.08)

Discharge Destination, N (%)
 Home 40,037 (16.15)

 Home w/ Home Health Agency 101,769 (41.06)

 Inpatient Rehab Facility 25,891 (10.45)

 Skilled Nursing Facility 78,915 (31.84)

 All others 1,263 (0.51)

Elixhauser Comorbidity Sum, N (%)
 0 33,574 (13.54)

 1 64,550 (26.04)

 2 67,244 (27.13)

 3 44,909 (18.12)

 4 22,615 (9.12)

 5 9,468 (3.82)

 6 3,619 (1.46)

 7 1,272 (0.51)

 8 424 (0.17)

 9 145 (0.06)

 10 48 (0.02)

 11 X (0.00)

 12 X (0.00)

Congestive Heart Failure, N (%) 5,937 (2.40)

Cardiac Arrhythmias, N (%) 27,273 (11.00)

https://www.health.ny.gov/statistics/sparcs/
https://www.health.ny.gov/statistics/sparcs/
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Complications were defined by the following criteria: 
(1) acute myocardial infarction, pneumonia, or sepsis/
septic shock occurring during the index admission or 
within a subsequent admission occurring within 7  days 
of the beginning of the index admission, (2) surgical 
site bleeding or pulmonary embolism during the index 
or subsequent admission taking place within 30  days of 
the start of the first admission (3) death during the index 
admission or within 30  days from index admission, (4) 
or mechanical complication, periprosthetic joint or sur-
gical wound complication occurring within the index or 
subsequent admission occurring within 90 days from the 
start of the index admission.

Statistical analysis
The dataset encompassing data from 3 January 2012 
and 30 September 2016 was subdivided randomly, with-
out replacement, into training (68%) validation (15%) 

and testing (15%) data sets. Finally, for external valida-
tion, n = 6000 (2%) TJA patients were identified within 
the SPARCS database from our PAC, using the hospital 
identifier, between 3 January 2012 and 30 September 
2016. Normalization of continuous variables and one-
hot encoding of categorical variables was performed after 
exclusively assigning each observation to a data set. The 
seven ML algorithms included: logistic regression (LR), 
adaptive boosting (AB), gradient boosting (Xg Boost), 
random forest (RF) classifier, support vector machine 
(SVM), a 1-layer neural network (NN), and a 5-layered 
NN. For the training data, the negative outcome obser-
vations (e.g., did not have a readmission) were randomly 
assigned to subsets equal to the number of positive 
outcome observations. For each preparation instance, 
parameters were optimized using a 5-fold cross-validated 
grid-search method to reduce over-fitting and enhance 
the generalizability of each model instance (Fig. 1). Each 
classifier was then validated on raw data, and classifier 
weights were readjusted upon calibration. Model weights 
were then fixed for each classifier variable and tested 
on the remaining non-trained SPARCS data. Finally, we 
externally validated the models with patient information 
from our PAC.

Model evaluation
Discrimination refers to a model’s ability to distin-
guish between cases and non-cases and this is typi-
cally expressed in terms of accuracy, recall, precision, 
and AUROC. Accuracy is the number of correct model 
predictions and overall predictions [19]. The recall 
(sensitivity) of a model refers to its ability to correctly 
predict positive values out of the total number of all 
positive values (true positives and false negatives) 
in the dataset. The precision of a model measures 
the positive predictive value, essentially determining 
which outcomes are truly positive when compared 
against all predicted positives (true positives and false 
positives) [20]. The AUROC demonstrates the rela-
tionship between recall and the false positive rate 
(FPR). The FPR is defined as the number of incorrectly 
predicted positive outcomes overall outcomes that are 
actually negative (true negatives and false positives) 
[21, 22]. For a binary classification, such as a compli-
cation, each point’s location on the AUROC is found 
by assessing a variety of thresholds for sorting of yi in 
the positive or negative class. The top left corner of 
the curve is an ideal case with 100% of positive values 
correctly classified and 0% of positive values incor-
rectly predicted at 0. The goal for models, therefore, 
is to maximize the true positive rate while minimiz-
ing the FPR, the larger the area under the AUROC the 

X represents a size that consists of less than ten individuals

Table 1 (continued)

Descriptive

Valvular Disease, N (%) 11,323 (4.57)

Pulmonary Circulation Disorders, N (%) Present 2460

Peripheral Vascular Disorders, N (%) 5,084 (2.05)

Hypertension, Uncomplicated, N (%) 146,559 (59.13)

Paralysis, N (%) 233 (0.09)

Other Neurological Disorders, N (%) 4,731 (1.91)

Chronic Pulmonary Disease, N (%) 39,561 (15.96)

Diabetes, Uncomplicated, N (%) 40,590 (16.38)

Diabetes, Complicated, N (%) 3,937 (1.59)

Hypothyroidism, N (%) 37,569 (15.16)

Renal Failure, N (%) 10,153 (4.10)

Liver Disease, N (%) 3,136 (1.27)

Peptic Ulcer Disease Excluding Bleeding, N (%) 1,014 (0.41)

Lymphoma, N (%) 649 (0.26)

Metastatic Cancer, N (%) 204 (0.08)

Solid Tumor Without Metastasis, N (%) 1,174 (0.47)

Rheumatoid Arthritis/Collagen Vascular, N (%) 10,955 (4.42)

Coagulopathy, N (%) 5,396 (2.18)

Obesity, N (%) 75,430 (30.43)

Weight Loss, N (%) 421 (0.17)

Fluid and Electrolyte Disorders, N (%) 21,941 (8.85)

Blood Loss Anemia, N (%) 952 (0.38)

Deficiency Anemia, N (%) 3,136 (1.27)

Alcohol Abuse, N (%) 2,960 (1.19)

Drug Abuse, N (%) 2,652 (1.07)

Psychoses, N (%) 991 (0.40)

Depression, N (%) 31,071 (12.53)

Hypertension, Complicated, N (%) 9,946 (4.01)
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better the model. Predictive modeling development 
and testing were performed under guidelines set forth 
by Transparent Reporting of a multivariable predic-
tion model for Individual Prognosis or Diagnosis (TRI-
POD) guidelines and the Guidelines for Developing 
and Reporting Machine Learning Models in Biomedi-
cal Research were followed for this analysis [19, 20].

Results
Baseline characteristics
A total of 247,875 patients were included in the cohort. 
The average age of the group was 65.4 ± 10.7 years and 
60% of patients were female (Table  1). The complica-
tions included pulmonary embolism (0.56%), mechani-
cal complication (0.49%) and pneumonia (0.39%) 

Fig. 1 The negative outcome observations (e.g., did not have readmission) were randomly assigned to subsets equal to the number of positive 
outcome observations to address low incidence rates and technical limitations. Each negative outcome subset was combined with the positive 
outcome observations and used to one model instance
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(Table  2). In reference to the entirety of the data set, 
168,555 (68.0%) were segmented for training, 37,182 
(15.0%) for validation and calibration, 37,182 (15.0%) 
for testing, and 6000 (2.00%) patients were included in 
the external validation set from our PAC.

Data balancing
The incidence rates of our test set for 90-day compos-
ite complications, 30-day mortality, and 30- & 90-day 
readmission, were 1.88%, 0.10%, 3.07%, and 5.15%, 
respectively. These rates were nearly identical for the 
training, validation and test set out to the hundredth 
decimal point. As for our PAC, the percentages for 
90-day composite complications, and 30-day mortality, 
30- & 90-day readmission were 1.33%, 0.13%, 2.94%, 
and 0.41% respectively. The negative outcome obser-
vations (e.g., did not have readmission) were randomly 
assigned to subsets equal to the number of positive 
outcome observations to address low incidence rates 
and technical limitations. Each negative outcome sub-
set was combined with the positive outcome observa-
tions and used to one model instance.

Testing data
After training and validating the models (Tables 3 and 4), 
testing on the untrained data (Table 5) showed RF clas-
sifier established the highest level of discrimination for 
90-day complications (AUROC 0.73, 95CI 0.73–0.74), 
30-day mortality (AUROC 0.78; 95CI 0.77–0.78), and 
30-day readmission (AUROC 0.61; 95CI 0.60–0.61). Xg 
Boost demonstrated the best performance for 90-day 
hospital readmission (AUROC 0.73; 95CI 0.72–0.73).

External validation
External validation of model performance at our primary 
arthroplasty center showed the Adaptive Boost had the 
greatest performance for 90-day composite complications 
(AUROC 0.69; 95CI 0.68–0.69) (Table 6). Random Forest 
classifier was best at predicting 30-day mortality (AUROC 
0.72; 95CI 0.72–0.73) and 30-day readmission (AUROC 
0.68; 95 CI 0.67–0.68). Additionally, the Adaptive Boost 
classifier was the strongest model for the prediction of 
90-day readmission (AUROC 0.72; 95 CI 0.72–0.73).

Explanatory variables
Feature importance was assessed for the top 3 variables 
that contributed the strongest weight to the top-perform-
ing model. Model predictors for 30-day mortality were 
found to be consistent between the test and external vali-
dation set demonstrating patient age, diseases of the cir-
culatory system, and length of hospitalization to be the 
most important attributes for the RF classifier. Addition-
ally, the prediction of 30-day readmission found that age, 
length of hospital stay, and the Elixhauser Comorbidity 
Index were the strongest contributors for the random 
forest classifier for models in both subsets.

As there was a discrepancy between classifier perfor-
mance for 90-day composite complications and 90-day 
readmissions between the test and external validation, 
both model aspects were described. For composite com-
plications and 90-day readmissions, our test set demon-
strated that RF classifier performed best, with hospital 
stay, patient age, and Elixhauser Comorbidity Index being 
the top features for both outcomes. However, upon 
external validation, the Adaptive Boost classifier had the 
strongest discriminative performance for 90-day-com-
posite complications and readmission, with age, surgical 
blood loss, and hospital length of stay being the top pre-
dictors for model output.

Discussion
The purpose of this study was to leverage the benefits of 
a relatively large and accurate SPARCS dataset to train 
ML models capable of achieving good discrimination 

Table 2 Complication characteristics

Complication

Acute Myocardial Infarction, N (%)
 No 247,577 (99.88)

 Yes 298 (0.12)

Pneumonia, N (%)
 No 246,910 (99.61)

 Yes 965 (0.39)

Sepsis/septicemia/shock, N (%)
 No 247,405 (99.81)

 Yes 470 (0.19)

Surgical Site Bleeding, N (%)
 No 247,765 (99.96)

 Yes 110 (0.04)

Pulmonary Embolism, N (%)
 No 246,475 (99.44)

 Yes 1,400 (0.56)

Mechanical Complication, N (%)
 No 246,667 (99.51)

 Yes 1,208 (0.49)

Periprosthetic Joint Infection/Wound Infection, N (%)
 No 247,453 (99.83)

 Yes 422 (0.17)
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(AUROC > 0.80) on an externally validated dataset rep-
resenting our PAC. Specifically, our outcomes focused 
on 90-day complications, 30-day mortality, and 30- & 
90-day readmissions. If successful, the study would 
demonstrate the ability to use “big” data to effectively 
predict single hospital system-level complications, mor-
tality, and readmissions. This would not only benefit our 
hospital system but also other hospital systems in NYS. 
While the results showed that no ML model achieved an 
AUROC > 0.80, overall model performance was on par 
with similar studies and model performance doesn’t dis-
credit relevant findings. Our results showed that the RF 
classifier had the strongest discriminative performance 
for 30-day mortality (AUROC = 0.72) and readmis-
sions (30-day AUROC = 0.68) on our external valida-
tion set. For 90-day composite complication and 90-day 
readmissions, the Adaptive Boost classifier was the best 

predictor in our external validation set (AUROC = 0.69 
and 0.72, respectively). While no ML model in the test-
ing dataset achieved an AUROC > 0.78, the drop in per-
formance between the best-performing ML model in the 
testing dataset and best-performing model in the exter-
nal validation dataset was no more than 0.06 points on 
an AUROC. This finding is important as it speaks to the 
potential generalizability of the SPARCS dataset to any 
arthroplasty center located within NYS. To the best of 
our knowledge, this study represents the most rigorous 
ML analysis of the SPARCS database for potential use in 
TJA care.

Mohammed et al. used the National Inpatient Service 
(NIS) administrative database to internally validate four 
ML algorithms (LR, Xg Boost, RF classifier, and NN) 
to perform predictive modeling for discharge disposi-
tion, composite post-surgical complications, and the 

Table 3 Model training on 68% of the dataset

LR Logistic regression, AB Adaptive boosting, Xg Boost gradient boosting, RF Random forest, SVM Support vector machine, NN a 1-layer neural network and a 5 layered 
NN

Accuracy Recall Precision AUROC

Outcome Model M SD LB UB M SD LB UB M SD LB UB M SD LB UB

90-D Composite 
Complications

AB 0.86 0.001 0.86 0.86 0.61 0.001 0.61 0.61 0.08 0.000 0.08 0.08 0.74 0.000 0.74 0.74

Xg Boost 0.74 0.002 0.74 0.75 0.77 0.003 0.77 0.78 0.003 0.000 0.003 0.003 0.76 0.001 0.76 0.76

LR 0.81 0.01 0.79 0.83 0.38 0.004 0.37 0.39 0.07 0.002 0.06 0.07 0.60 0.002 0.60 0.61

RF 0.80 0.002 0.80 0.81 0.41 0.001 0.41 0.42 0.11 0.000 0.11 0.11 0.62 0.000 0.62 0.62

SVM 0.63 0.01 0.63 0.63 0.61 0.01 0.61 0.61 0.03 0.001 0.03 0.03 0.62 0.00 0.62 0.62

1 Layer NN 0.88 0.21 0.87 0.89 0.23 0.28 0.21 0.25 0.05 0.10 0.04 0.05 0.56 0.07 0.56 0.57

5 Layer NN 0.88 0.21 0.87 0.90 0.23 0.28 0.21 0.24 0.04 0.10 0.04 0.05 0.56 0.07 0.56 0.57

30-D Mortality AB 0.80 0.001 0.80 0.80 0.99 0.002 0.98 0.99 0.07 0.001 0.07 0.07 0.87 0.001 0.87 0.88

Xg Boost 0.74 0.001 0.74 0.75 0.93 0.003 0.92 0.93 0.004 0.000 0.004 0.004 0.84 0.002 0.83 0.84

LR 0.62 0.01 0.61 0.63 0.941 0.02 0.89 0.99 0.07 0.002 0.06 0.07 0.77 0.01 0.75 0.80

RF 0.65 0.001 0.65 0.65 1.000 0.00 1.00 1.00 0.12 0.000 0.12 0.13 0.81 0.001 0.81 0.81

SVM 0.66 0.10 0.66 0.67 0.72 0.08 0.72 0.73 0.00 0.001 0.00 0.00 0.69 0.06 0.69 0.70

1 Layer NN 0.89 0.22 0.88 0.91 0.34 0.37 0.31 0.36 0.00 0.01 0.00 0.00 0.61 0.13 0.60 0.62

5 Layer NN 0.89 0.22 0.88 0.91 0.33 0.36 0.30 0.35 0.00 0.01 0.00 0.00 0.61 0.13 0.60 0.62

30-D Readmission AB 0.88 0.001 0.88 0.88 0.59 0.001 0.59 0.59 0.09 0.000 0.09 0.09 0.74 0.000 0.74 0.74

GB 0.95 0.000 0.95 0.95 0.53 0.000 0.53 0.54 0.01 0.000 0.01 0.01 0.74 0.000 0.74 0.74

LR 0.85 0.001 0.85 0.85 0.34 0.001 0.34 0.34 0.07 0.000 0.07 0.07 0.60 0.000 0.60 0.60

RF 0.82 0.001 0.81 0.82 0.39 0.001 0.38 0.39 0.11 0.000 0.11 0.12 0.61 0.000 0.61 0.61

SVM 0.61 0.02 0.60 0.63 0.60 0.01 0.59 0.60 0.05 0.003 0.05 0.05 0.61 0.01 0.60 0.61

1 Layer NN 0.87 0.20 0.86 0.88 0.16 0.24 0.15 0.18 0.03 0.03 0.03 0.03 0.53 0.03 0.53 0.53

5 Layer NN 0.87 0.20 0.86 0.89 0.16 0.24 0.15 0.18 0.03 0.04 0.03 0.03 0.53 0.03 0.53 0.53

90-D Readmission AB 0.88 0.001 0.88 0.88 0.99 0.000 0.99 0.99 0.13 0.001 0.13 0.14 0.93 0.000 0.93 0.94

GB 0.77 0.001 0.77 0.78 0.95 0.002 0.94 0.95 0.004 0.000 0.004 0.004 0.86 0.001 0.86 0.86

LR 0.80 0.01 0.78 0.83 0.99 0.000 0.99 0.99 0.14 0.01 0.13 0.15 0.89 0.01 0.88 0.91

RF 0.79 0.01 0.76 0.81 0.99 0.000 0.99 0.99 0.20 0.01 0.18 0.21 0.88 0.01 0.87 0.90

SVM 0.61 0.04 0.59 0.62 0.62 0.03 0.61 0.63 0.08 0.01 0.08 0.08 0.61 0.02 0.60 0.62

1 Layer NN 0.86 0.20 0.84 0.87 0.16 0.24 0.15 0.18 0.05 0.06 0.05 0.06 0.53 0.03 0.53 0.53

5 Layer NN 0.86 0.20 0.85 0.87 0.16 0.24 0.14 0.17 0.05 0.06 0.05 0.06 0.53 0.03 0.52 0.53
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need for blood transfusion after TJA [16]. The group 
found that the Xg Boost was capable of predicting out-
comes, with an AUROC of 0.80–0.87. While an impres-
sive proof of concept, the lack of external validation of 
their NIS model leaves questions about the potential 
clinical utility of the NIS dataset at any given arthro-
plasty center. The NIS, although advantageous due 
to its quantity of data, was created to assess national 
trends and correlation and not to be used to potentially 
direct care at a statewide level. The database randomly 
samples 20% of hospitals nationwide, thus potentially 
leading to significant unintended bias as to where infor-
mation is collected [21, 23]. Furthermore, there are no 
weights or classifiers applied to each state to account 
for the difference in the number of metrics collected 
[22]. Devana et al. investigated the use of the California 
Office of Statewide Health Planning and Development 

state dataset (OSHPD) to train and test ML algorithms 
to predict complications following TKA [24]. The group 
trained ML models (LR, Xg Boost, Adaptive Boost, 
RF classifier, and ensemble) on 156,750 TKA patients 
and demonstrated that Adaptive Boost had the best 
discriminative performance with an AUROC of 0.68, 
being congruent to the findings of our external valida-
tion model. It is important to note that both studies, by 
Mohammed et al. and Devana et al., relied on internal 
validation of their respective datasets. Therefore, while 
the results of these studies provide valuable insights 
into the potential predictive capabilities of ML algo-
rithms for TJA outcomes, external validation on diverse 
datasets is essential to the establishment of the reli-
ability and applicability of these models in real-world 
clinical settings. External validation helps mitigate 
the concerns of dataset-specific biases and increases 

Table 4 Validation and calibration on 15% of untrained data

LR Logistic regression, AB Adaptive boosting, Xg Boost gradient boosting, RF Random forest, SVM Support vector machine, NN a 1-layer neural network and a 5 layered 
NN

Accuracy Recall Precision AUROC

Outcome Model M SD LB UB M SD LB UB M SD LB UB M SD LB UB

90-D Composite 
Complications

AB 0.86 0.001 0.86 0.87 0.57 0.001 0.57 0.58 0.08 0.000 0.07 0.08 0.72 0.14 0.000 0.13

Xg Boost 0.74 0.002 0.74 0.75 0.65 0.002 0.64 0.65 0.003 0.000 0.003 0.003 0.70 0.01 0.000 0.01

LR 0.81 0.008 0.79 0.83 0.35 0.008 0.34 0.37 0.06 0.001 0.061 0.067 0.59 0.107 0.002 0.10

RF 0.80 0.001 0.80 0.81 0.40 0.001 0.39 0.40 0.11 0.000 0.113 0.114 0.62 0.18 0.001 0.17

SVM 0.63 0.009 0.63 0.64 0.59 0.006 0.58 0.59 0.03 0.001 0.03 0.03 0.61 0.01 0.61 0.61

1 LAYER NN 0.88 0.21 0.87 0.89 0.23 0.28 0.21 0.24 0.04 0.060 0.03 0.04 0.56 0.07 0.56 0.56

5 LAYER NN 0.88 0.21 0.87 0.90 0.22 0.28 0.20 0.24 0.04 0.07 0.03 0.04 0.56 0.07 0.55 0.56

30-D Mortality AB 0.76 0.002 0.75 0.77 0.66 0.002 0.65 0.66 0.05 0.000 0.050 0.051 0.71 0.09 0.001 0.09

Xg Boost 0.74 0.001 0.74 0.75 0.67 0.002 0.66 0.67 0.003 0.000 0.003 0.003 0.70 0.005 0.000 0.09

LR 0.60 0.004 0.59 0.61 0.61 0.003 0.60 0.62 0.05 0.000 0.046 0.047 0.61 0.09 0.001 0.085

RF 0.61 0.001 0.61 0.62 0.62 0.001 0.61 0.62 0.08 0.000 0.079 0.080 0.62 0.14 0.000 0.14

SVM 0.09 0.66 0.67 0.68 0.72 0.07 0.72 0.73 0.00 0.000 0.00 0.00 0.69 0.03 0.69 0.70

1 LAYER NN 0.89 0.22 0.88 0.91 0.30 0.34 0.28 0.32 0.00 0.006 0.00 0.00 0.60 0.12 0.59 0.60

5 LAYER NN 0.89 0.22 0.88 0.91 0.29 0.34 0.27 0.31 0.00 0.006 0.00 0.00 0.59 0.12 0.59 0.60

30-D Readmission AB 0.88 0.001 0.88 0.88 0.57 0.001 0.56 0.57 0.09 0.000 0.087 0.089 0.73 0.153 0.000 0.15

Xg Boost 0.95 0.000 0.95 0.95 0.33 0.001 0.32 0.33 0.01 0.000 0.007 0.007 0.64 0.01 0.000 0.01

LR 0.84 0.001 0.84 0.85 0.32 0.002 0.31 0.32 0.07 0.000 0.069 0.070 0.59 0.11 0.000 0.11

RF 0.82 0.001 0.81 0.82 0.39 0.002 0.38 0.39 0.12 0.000 0.11 0.12 0.62 0.18 0.001 0.18

SVM 0.62 0.03 0.61 0.63 0.60 0.009 0.60 0.61 0.05 0.003 0.05 0.05 0.61 0.02 0.60 0.62

1 LAYER NN 0.87 0.21 0.86 0.88 0.16 0.25 0.15 0.18 0.03 0.05 0.03 0.04 0.53 0.04 0.53 0.53

5 LAYER NN 0.87 0.21 0.86 0.89 0.16 0.25 0.14 0.18 0.03 0.05 0.03 0.04 0.53 0.04 0.53 0.53

90-D Readmission AB 0.87 0.001 0.86 0.87 0.58 0.001 0.57 0.58 0.08 0.000 0.081 0.083 0.73 0.14 0.001 0.14

Xg Boost 0.77 0.001 0.77 0.78 0.69 0.001 0.68 0.69 0.003 0.000 0.003 0.003 0.73 0.01 0.000 0.01

LR 0.78 0.01 0.75 0.81 0.41 0.02 0.38 0.44 0.06 0.001 0.05 0.06 0.60 0.10 0.001 0.10

RF 0.75 0.01 0.72 0.77 0.46 0.02 0.43 0.50 0.10 0.001 0.09 0.10 0.61 0.16 0.001 0.16

SVM 0.62 0.03 0.61 0.63 0.62 0.03 0.60 0.63 0.08 0.01 0.08 0.08 0.61 0.02 0.60 0.62

1 LAYER NN 0.87 0.20 0.86 0.88 0.16 0.24 0.15 0.18 0.05 0.06 0.05 0.06 0.53 0.04 0.53 0.53

5 LAYER NN 0.86 0.20 0.85 0.87 0.16 0.25 0.14 0.17 0.05 0.07 0.05 0.06 0.53 0.04 0.53 0.53
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confidence in the generalizability of the findings, thus 
enhancing the overall clinical utility of the developed 
models.

Several studies have assessed differences in the model 
prediction of neural networks in comparison to more 
traditional ML algorithms [25, 26]. They tried to answer 
the question: “Would these more complex ML algorithms 
outperform their less advanced counterparts”. However, 
most of these studies failed to incorporate crucial detail 
as to the layer of models used in their neural network. 
In fact, few studies have assessed whether a neural net-
work with an increased number of hidden layers would 
improve model performance [27, 28]. A neural network 
at its most basic form has just one layer of inputs, one 
layer of active units, and one layer of outputs. The out-
puts do not interact, so a network with “n” outputs can be 
treated as “n” separate single-output networks. Therefore, 

a single-layer neural network can only be used to repre-
sent linearly separable functions. However, multi-layer 
networks can learn to develop interconnections and 
unforeseen associations around examples in some high-
dimensional space that can separate and classify them, 
thereby overcoming the limitation of linear separability. 
Our study found that the 1- and 5-layer neural networks 
were nearly identical in their performance regarding 
AUROC and were inferior to the other models when 
predicting the TJA outcomes of interest. The reasons for 
decreased performance of our NN are not entirely clear 
but it does provide evidence that highly complex ML 
algorithms do not necessarily confer improved perfor-
mance in the SPARCS dataset. Total joint arthroplasty 
has witnessed a notable shift towards value-based care, 
which emphasizes the delivery of high-quality, cost-effec-
tive, and patient-centered healthcare [10, 28]. This shift 

Table 5 Testing results from 15% of the untrained dataset

LR Logistic regression, AB Adaptive boosting, Xg Boost gradient boosting, RF Random forest, SVM Support vector machine, NN a 1-layer neural network and a 5-layered 
NN

Accuracy Recall Precision AUROC

Outcome Model M SD LB UB M SD LB UB M SD LB UB M SD LB UB

90-D Composite 
Complications

AB 0.87 .006 0.87 0.87 0.58 0.001 0.58 0.58 0.08 0.001 0.08 0.08 0.72 0.001 0.72 0.73

Xg Boost 0.76 0.003 0.75 0.76 0.67 0.002 0.67 0.67 0.05 0.001 0.05 0.05 0.72 0.001 0.71 0.72

LR 0.88 0.001 0.88 0.88 0.57 0.001 0.57 0.57 0.09 0.001 0.09 0.09 0.73 0.000 0.72 0.73

RF 0.87 0.001 0.87 0.88 0.59 0.001 0.59 0.59 0.09 0.001 0.08 0.09 0.73 0.001 0.73 0.74

SVM 0.63 0.01 0.63 0.63 0.61 0.01 0.61 0.61 0.03 0.001 0.03 0.03 0.62 0.01 0.62 0.62

1 Layer NN 0.88 0.21 0.87 0.89 0.23 0.30 0.21 0.25 0.04 0.07 0.03 0.04 0.56 0.08 0.56 0.57

5 Layer NN 0.88 0.21 0.87 0.90 0.23 0.30 0.21 0.25 0.04 0.07 0.03 0.04 0.56 0.08 0.56 0.57

30-D Mortality AB 0.74 0.001 0.74 0.75 0.76 0.002 0.75 0.76 0.00 0.001 0.00 0.00 0.75 0.001 0.75 0.75

Xg Boost 0.95 0.000 0.95 0.95 0.40 0.001 0.40 0.41 0.01 0.001 0.01 0.01 0.68 0.001 0.68 0.68

LR 0.78 0.001 0.77 0.78 0.78 0.001 0.78 0.79 0.00 0.001 0.00 0.00 0.59 0.001 0.59 0.59

RF 0.82 0.01 0.80 0.83 0.35 0.01 0.34 0.37 0.06 0.001 0.06 0.07 0.78 0.001 0.77 0.78

SVM 0.66 0.09 0.66 0.67 0.74 0.05 0.74 0.74 0.00 0.001 0.00 0.00 0.70 0.04 0.70 0.70

1 Layer NN 0.89 0.22 0.88 0.90 0.35 0.38 0.32 0.37 0.00 0.01 0.00 0.00 0.62 0.14 0.61 0.63

5 Layer NN 0.89 0.22 0.88 0.91 0.34 0.38 0.32 0.36 0.00 0.01 0.00 0.00 0.62 0.15 0.61 0.63

30-D Readmission AB 0.85 0.001 0.85 0.85 0.32 0.001 0.32 0.33 0.07 0.00 0.07 0.07 0.60 0.001 0.59 0.60

Xg Boost 0.78 0.01 0.76 0.80 0.41 0.02 0.37 0.44 0.06 0.001 0.06 0.06 0.60 0.002 0.60 0.60

LR 0.80 0.001 0.80 0.81 0.40 0.001 0.39 0.40 0.11 0.001 0.11 0.11 0.61 0.001 0.61 0.61

RF 0.61 0.002 0.61 0.62 0.62 0.002 0.61 0.62 0.08 0.001 0.08 0.08 0.62 0.001 0.61 0.62

SVM 0.62 0.03 0.61 0.63 0.60 0.01 0.60 0.61 0.05 0.003 0.05 0.05 0.61 0.02 0.60 0.62

1 Layer NN 0.87 0.21 0.86 0.88 0.16 0.24 0.14 0.17 0.03 0.03 0.03 0.03 0.53 0.03 0.52 0.53

5 Layer NN 0.87 0.21 0.86 0.89 0.15 0.24 0.14 0.17 0.03 0.05 0.03 0.03 0.53 0.03 0.52 0.53

90-D Readmission AB 0.75 0.01 0.72 0.77 0.47 0.02 0.43 0.50 0.10 0.001 0.09 0.10 0.61 0.002 0.61 0.62

Xg Boost 0.87 0.001 0.87 0.87 0.58 0.001 0.58 0.58 0.08 0.00 0.08 0.08 0.70 0.001 0.70 0.71

LR 0.76 0.003 0.75 0.76 0.67 0.002 0.67 0.67 0.05 0.00 0.05 0.05 0.71 0.002 0.71 0.71

RF 0.88 0.001 0.88 0.88 0.57 0.001 0.57 0.57 0.09 0.00 0.09 0.09 0.72 0.001 0.71 0.72

SVM 0.60 0.03 0.59 0.62 0.61 0.03 0.60 0.62 0.08 0.01 0.08 0.08 0.61 0.02 0.60 0.62

1 Layer NN 0.86 0.20 0.84 0.87 0.16 0.24 0.14 0.17 0.05 0.06 0.05 0.05 0.53 0.03 0.52 0.53

5 Layer NN 0.86 0.20 0.85 0.87 0.15 0.24 0.14 0.17 0.05 0.06 0.05 0.05 0.53 0.03 0.52 0.53
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has been driven by the need to improve patient outcomes, 
control healthcare costs, and enhance overall value in the 
TJA field. Risk calculators through ML algorithms may 
accurately predict factors that may pose a higher risk for 
poor outcomes following TJA. These calculators have the 
potential to be utilized through a spectrum of preopera-
tive care to the point of discharge from the site of sur-
gical service. However, it is important to validate these 
models externally to assess their generalizability to other 
healthcare centers. Therefore, future studies in machine 
learning should prioritize external validation of ML mod-
els to ensure their reliability and effectiveness. One of the 
primary goals of this study was to ensure external valida-
tion of the models which is frequently missing in ortho-
paedic literature assessing ML model performance. The 
failure of external validation of such models may lead to 

misleading conclusions. For example, our results showed 
a discrepancy in model performance between the test 
and external validation sets. Xg Boost was the best per-
forming model for predicting 90-day readmission in our 
test set, while the AB model performed better for our 
PAC data. Given the implications of wrong predictions in 
patient care, there must be continued emphasis on exter-
nal validation for future AI-based investigations.

This study is not without limitations and the limita-
tions are primarily present in the dataset. SPARCS 
does have the limitation of being a payor-based dataset 
which, to some extent, limits the validity of the clini-
cal markers (e.g., identification of acute and chronic 
conditions). However, one needs to trade that off with 
its many strengths as previously mentioned. Another 
possible limitation may be due to the possible unique 

Table 6 External validation of 2% of untrained data

LR Logistic regression, AB Adaptive boosting, Xg Boost gradient boosting, RF Random forest, SVM Support vector machine, NN a 1-layer neural network and a 5 layered 
NN

Accuracy Recall Precision AUROC

Outcome Model M SD LB UB M SD LB UB M SD LB UB M SD LB UB

90-D Composite 
Complications

AB 0.90 0.003 0.89 0.91 0.47 0.004 0.46 0.48 0.07 0.002 0.06 0.07 0.69 0.002 0.68 0.69

Xg Boost 0.79 0.003 0.78 0.79 0.56 0.005 0.55 0.57 0.00 0.000 0.00 0.00 0.68 0.002 0.67 0.68

LR 0.85 0.01 0.83 0.87 0.34 0.006 0.32 0.35 0.08 0.003 0.07 0.08 0.60 0.003 0.60 0.61

RF 0.85 0.003 0.84 0.86 0.36 0.006 0.35 0.37 0.12 0.002 0.11 0.12 0.62 0.002 0.61 0.62

SVM 0.74 0.01 0.74 0.75 0.59 0.02 0.59 0.60 0.03 0.001 0.03 0.03 0.67 0.01 0.67 0.67

1 Layer NN 0.90 0.21 0.88 0.91 0.21 0.27 0.19 0.22 0.04 0.08 0.03 0.04 0.56 0.07 0.55 0.56

5 Layer NN 0.90 0.21 0.88 0.91 0.20 0.27 0.19 0.22 0.04 0.11 0.03 0.04 0.55 0.07 0.55 0.56

30-D Mortality AB 0.81 0.01 0.80 0.82 0.56 0.006 0.55 0.57 0.04 0.001 0.04 0.04 0.70 0.002 0.69 0.70

Xg Boost 0.80 0.02 0.80 0.80 0.60 0.005 0.59 0.61 0.00 0.000 0.00 0.00 0.62 0.002 0.62 0.63

LR 0.65 0.01 0.63 0.66 0.60 0.008 0.58 0.62 0.05 0.001 0.05 0.05 0.63 0.002 0.63 0.63

RF 0.67 0.01 0.66 0.68 0.59 0.01 0.58 0.60 0.08 0.001 0.08 0.08 0.72 0.002 0.71 0.72

SVM 0.77 0.11 0.76 0.77 0.59 0.12 0.58 0.60 0.00 0.001 0.00 0.00 0.68 0.05 0.68 0.68

1 Layer NN 0.90 0.21 0.89 0.92 0.27 0.34 0.25 0.29 0.01 0.02 0.00 0.01 0.59 0.12 0.58 0.60

5 Layer NN 0.90 0.22 0.89 0.92 0.27 0.34 0.25 0.29 0.01 0.04 0.00 0.01 0.59 0.12 0.58 0.59

30-D Readmission AB 0.90 0.004 0.90 0.91 0.48 0.01 0.47 0.49 0.07 0.002 0.07 0.08 0.48 0.0002 0.48 0.48

Xg Boost 0.96 0.000 0.96 0.96 0.00 0.000 0.000 0.001 0.00 0.000 0.00 0.00 0.62 0.002 0.62 0.63

LR 0.87 0.003 0.87 0.88 0.36 0.01 0.35 0.37 0.09 0.002 0.09 0.09 0.61 0.002 0.61 0.62

RF 0.86 0.004 0.85 0.87 0.34 0.01 0.33 0.35 0.12 0.003 0.12 0.13 0.68 0.002 0.67 0.68

SVM 0.67 0.04 0.65 0.68 0.59 0.02 0.59 0.60 0.05 0.004 0.05 0.05 0.63 0.02 0.63 0.64

1 Layer NN 0.88 0.87 0.90 0.88 0.16 0.24 0.15 0.18 0.04 0.06 0.04 0.05 0.53 0.04 0.53 0.54

5 Layer NN 0.88 0.21 0.87 0.90 0.16 0.25 0.15 0.18 0.04 0.06 0.04 0.04 0.53 0.04 0.53 0.54

90-D Readmission AB 0.93 0.001 0.92 0.93 0.42 0.004 0.41 0.43 0.08 0.001 0.08 0.08 0.72 0.002 0.72 0.73

Xg Boost 0.83 0.001 0.82 0.83 0.62 0.003 0.62 0.63 0.00 0.000 0.00 0.01 0.61 0.003 0.60 0.62

LR 0.82 0.01 0.80 0.84 0.38 0.02 0.35 0.42 0.07 0.001 0.07 0.07 0.62 0.003 0.62 0.63

RF 0.80 0.01 0.78 0.82 0.43 0.01 0.40 0.46 0.10 0.002 0.09 0.10 0.69 0.002 0.68 0.69

SVM 0.65 0.04 0.63 0.67 0.63 0.04 0.61 0.64 0.08 0.01 0.07 0.08 0.64 0.02 0.63 0.65

1 Layer NN 0.87 0.20 0.86 0.89 0.16 0.24 0.14 0.17 0.06 0.07 0.05 0.06 0.53 0.04 0.53 0.54

5 Layer NN 0.87 0.20 0.86 0.89 0.16 0.25 0.14 0.17 0.06 0.07 0.05 0.06 0.53 0.04 0.53 0.54



Page 11 of 12Shaikh et al. Arthroplasty            (2023) 5:58  

separation in population demographics of New York 
City when compared to the rest of NYS. As such, risk 
calculators created by SPARCS-trained data may not 
execute consistently on a PAC center. Further research 
should be conducted to identify the predictive value 
that ML can have on assessing TJA in New York City 
patients when trained with an NYS statewide dataset. 
Finally, the SPARCS dataset included the years 2012 
through 2016, which contained the evolution of prac-
tice pattern changes driven by the CJR model and 
other bundled payments. These bundle payments are 
known to be associated with decreased complications 
and readmissions. Future studies with more recent data 
may affect future model performance and conclusions.

Conclusions
This study was the first to investigate the use of ML 
to create a predictive risk calculator from a highly 
validated statewide database and externally validate 
it to a single PAC within the same geographic region. 
All models showed low to moderate discrimina-
tion on an AUROC, which is consistent with recent 
model performance in the TJA literature. However, 
this study included external validation performance 
which is lacking in many prior studies. Furthermore, 
the external validation performance was of moder-
ate discrimination on an AUROC. More advanced NN 
models did not perform better than less sophisticated 
ML models. The importance of detailing the dataset, 
model construction, and model validation cannot be 
overstated. The unique composition of New York City 
and its subsequent influence on future ML risk calcu-
lators created through SPARCS is a potential area of 
investigation.
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