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Polymorphism rs143384 GDF5 reduces 
the risk of knee osteoarthritis development 
in obese individuals and increases the disease 
risk in non‑obese population
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Abstract 

Background  We investigated the effect of obesity on the association of genome-wide associative studies (GWAS)-
significant genes with the risk of knee osteoarthritis (KOA).

Methods  All study participants (n = 1,100) were divided into 2 groups in terms of body mass index (BMI): BMI ≥ 30 
(255 KOA patients and 167 controls) and BMI < 30 (245 KOA and 433 controls). The eight GWAS-significant KOA single 
nucleotide polymorphisms (SNP) of six candidate genes, such as LYPLAL1 (rs2820436, rs2820443), SBNO1 (rs1060105, 
rs56116847), WWP2 (rs34195470), NFAT5 (rs6499244), TGFA (rs3771501), GDF5 (rs143384), were genotyped. Logistic 
regression analysis (gPLINK online program) was used for SNPs associations study with the risk of developing KOA 
into 2 groups (BMI ≥ 30 and BMI < 30) separately. The functional effects of KOA risk loci were evaluated using in silico 
bioinformatic analysis.

Results  Multidirectional relationships of the rs143384 GDF5 with KOA in BMI-different groups were found: This SNP 
was KOA protective locus among individuals with BMI ≥ 30 (OR 0.41 [95%CI 0.20–0.94] recessive model) and was dis-
order risk locus among individuals with BMI < 30 (OR 1.32 [95%CI 1.05–1.65] allele model, OR 1.44 [95%CI 1.10–1.86] 
additive model, OR 1.67 [95%CI 1.10–2.52] dominant model). Polymorphism rs143384 GDF5 manifested its regulatory 
effects in relation to nine genes (GDF5, CPNE1, EDEM2, ERGIC3, GDF5OS, PROCR, RBM39, RPL36P4, UQCC1) in adipose tis-
sue, which were involved in the regulation of pathways of apoptosis of striated muscle cells.

Conclusions  In summary, the effect of obesity on the association of the rs143384 GDF5 with KOA was shown: 
the “protective” value of this polymorphism in the BMI ≥ 30 group and the “risk” meaning in BMI < 30 cohort.
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Introduction
Osteoarthritis (OA) is a whole-joint disease involving 
all joint tissues (cartilage, subchondral bone, synovial 
membrane, meniscus, and infrapatellar fat pad) [1]. 
Knee osteoarthritis (KOA) represents the most com-
mon joint disease with a systemic metabolic compo-
nent [2]. KOA affects 16% of the population over the 
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age of 15 worldwide, and in 2020 about 654.1 million 
people over the age of 40 suffered from this condition 
[3]. The prevalence of KOA is constantly on the rise, 
primarily due to the increasing average life expectancy, 
as well as higher rates of obesity among the population 
[4]. Across the globe, KOA is considered to be a signifi-
cant public health problem that has serious social and 
economic consequences [5]. The main reasons for KOA 
patients to seek medical help are pain and loss of joint 
function [6]. Total knee replacement is currently the 
most used treatment option for end-stage KOA [7]. The 
total number of knee replacements is expected to grow 
to 3.48 million by 2030 [8]. The material costs associ-
ated with KOA account for about 0.5% of gross domes-
tic product in developed countries [9].

A number of factors, such as age, female sex, obe-
sity, genetics, joint injuries, vitamin D deficiency, etc., 
have been identified to be the leading risk factors for 
KOA [10, 11]. Among them, obesity and overweight 
are two major modifiable risk factors [12]. Tradition-
ally, one of the KOA causes is believed to be the over-
weight-related biomechanical load on the joint [13]. At 
the same time, it is known that adipokines and proin-
flammatory cytokines produced by systemic and local 
adipose tissues are involved in cartilage degradation, 
synovial membrane inflammation, and bone erosion [2]. 
In addition, adipose tissue in the knee joint (the infra-
patellar and suprapatellar fat pads, and other small fat 
pads such as posterior knee fat pad and posterior supra-
patellar fat pad [prefemoral]) can interact with neigh-
boring tissues, thereby potentially affecting homeostasis 
of joint and leading to destructive processes in KOA due 
to pro-inflammatory mediators [2, 14, 15]. Therefore, 
KOA is presently considered to be a disease entity and 
is aggravated by a metabolic component associated with 
adipose tissue [13]. Obese or overweight people are 
three times more likely to develop KOA than individuals 
with normal body weight [16]. It is known that the pro-
gression of the disease is more often observed in obese/
overweight KOA patients [17]. Obviously, BMI plays a 
substantial role in the predisposition to KOA, but the 
mechanisms (including genetic one) underlying this 
relationship remain unclear.

The KOA is a polygenic disease [18, 19]. Thanks to 
genome-wide association studies (GWAS), to date, 
more than 80 polymorphic loci associated with the 
development of KOA are known [20]. Several stud-
ies have examined the relationship of various genetic 
variants with BMI in KOA patients [21–28]. At the 
same time, despite numerous data indicating a signifi-
cant relationship between BMI and the development/
progression of KOA [12, 13, 17, 29], genetic stud-
ies revealing the role of individual GWAS-significant 

polymorphic loci in the disease formation in interac-
tion with BMI are very limited [25, 28].

Therefore, in this study, we investigated the possible 
effect of obesity on the GWAS-significant genetic asso-
ciation with the risk of developing KOA.

Materials and methods
KOA patients and controls
The study was of “patient-control” design, and involved 
1,100 subjects (500 patients with KOA and 600 indi-
viduals without KOA), who were divided into two 
groups in terms of BMI: group I, including individuals 
with a BMI ≥ 30 (255 KOA patients and 167 controls); 
and group II, consisting of subjects with a BMI < 30 
(245 KOA patients and 433 controls). The anthropo-
metric indicators (weight, height) were gathered by 
previously outlined standard methods [30]. BMI was 
computed by using the standard method (ratio between 
body weight (in kilograms) and height (in meters) in 
squared [kg/m2]) [31]. We used well-accepted BMI 
grading, i.e., < 18.5 (underweight), 18.5–24.9 (normal 
weight), 25.0–29.9 (overweight), and ≥ 30 (obese) [32]. 
The KOA patients for the study were selected by cer-
tified orthopedic-traumatologists over the period from 
February 2016 to December 2018, based on “Belgorod 
City Hospital No. 2” (Department of Orthopedics and 
Traumatology). The study was approved by the ethics 
committee of this hospital.

Several inclusion criteria were used in the formation 
of KOA and control cohorts:

(1) individuals of European origin, who were born 
and living in the Central region of Russia and 
were not related to each other [33–35]; (2) aged 
40 years or older; (3) availability of informed con-
sent to take part in the study; (4) the KOA group 
included patients with [36], (i) primary KOA of the 
knee joint, diagnosed against the American Col-
lege of Rheumatology [37], (ii) KOA radiological 
stage by J. Kellgren-J. Lawrence (K/L) ≥ 2 [38], (iii) 
the presence of pain syndrome more than 40 points 
on the Visual Analog Scale (VAS) [39]; (5) the con-
trol group included subjects who did not have any 
pathology of the musculoskeletal system. Exclu-
sion criteria were as follows: (1) the presence of 
severe hypertension, coronary heart disease, diabe-
tes mellitus, renal-hepatic insufficiency, oncologi-
cal diseases, systemic connective tissue diseases, 
joint injuries in the anamnesis, inflammatory joint 
diseases, congenital malformations of the muscu-
loskeletal system, (2) refusal to participate in the 
study.
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SNP selection criteria and genotyping
The eight GWAS-significant KOA SNPs of six candi-
date genes, such as LYPLAL1—lysophospholipase like 
1 (rs2820436, rs2820443), SBNO1—strawberry notch 
homolog 1 (rs1060105, rs56116847), WWP2—WW domain 
containing E3 ubiquitin protein ligase 2 (rs34195470), 
NFAT5—nuclear factor of activated T cells 5 (rs6499244), 
TGFA—transforming growth factor alpha (rs3771501), 
GDF5—growth differentiation factor 5 (rs143384), were 
selected for the genetic study based on previously regis-
tered GWAS associations (P ≤ 5 × 10–8) of these loci with 
KOA in European populations [40–44] (Table S1, Sup-
plementary Information) and existence of the functional 
value [45–47]. To determine the loci functionality, the 
HaploReg database was used [48] (Table S2, Supplemen-
tary Information).

Genomic DNA of participants was isolated from 
peripheral blood (The buffy coat containing leucocytes 
was used.) by using a well-established phenol–chloro-
form-ethanol extraction/concentration method based 
on a previously published laboratory protocol [49]. The 
purity and concentration of the isolated DNA samples 
were measured on a NanoDrop spectrophotometer [50]. 
DNA materials of KOA patients and controls (each PCR 
tablet contained DNA samples of patients and controls) 
were genotyped by real-time PCR on the CFX96-Real-
Time PCR System (Bio-Rad Laboratories, Hercules, CA, 
USA) [51, 52] and by using specially-developed reagent 
kits (TestGen, Ulyanovsk, Russia). The sequences of oli-
gonucleotide primers and probes used in SNP genotyping 
are presented in Table S3 (Supplementary Information). 
To control the quality of experimental data, ≈7%–10% of 
the randomly selected DNA specimen were re-genotyped 
[53, 54]. A virtually complete coincidence was achieved 
between the repeated genotyping results with the pri-
mary data (an error of no more than 1%).

Statistical and bioinformatic analysis
For all the considered loci in KOA patients and controls 
in the two study subgroups (BMI ≥ 30 and BMI < 30), we 
evaluated the correspondence of the observed genotype 
distribution to the expected one according to the Hardy–
Weinberg pattern [55, 56]. The association between SNP 
and KOA was investigated in the two groups (BMI ≥ 30 
and BMI < 30) separately by using the logistic regression 
(allelic/additive/dominant/recessive genetic models [57] 
were considered), with adjustments made for age, sex, 
BMI, occupation-related physical workload, hereditary 
burden, the presence of concomitant pathology of the 
cardiovascular, musculoskeletal systems, height and lei-
sure time physical activity (Table 1). All calculations were 
carried out by employing the gPLINK software [58] and 

were subjected to calibration for multiple comparisons (a 
well-established permutation test was applied) [59, 60]. 
Finally, a Pperm. ≤ 0.025 was considered to be statistically 
significant (Bonferroni correction was introduced for the 
number of groups compared (n = 2)—with/without obe-
sity) [61]. For individual SNPs, statistical power was esti-
mated by utilizing Quanto (v.1.2.4) [62].

Functionality of KOA-associated loci (epigenetic; 
eQTL; sQTL; protein structure change (amino acid 
substitution) [63]) and SNPs strongly linked with them 
(parameter r2 ≥ 0.80 [64]) were estimated by using mod-
ern bioinformatic online resources (in silico procedures) 
[65–67]: (a) Blood eQTL browser [68], (b) PolyPhen-2 
[69], (c) GeneMANIA [70], (d) HaploReg [48], (e) GTEx-
project [71], (f ) SIFT [72].

Results
The main phenotypic parameters of KOA patients and 
KOA-free individuals in the two groups, grouped in 
terms of the presence/absence of obesity (BMI ≥ 30 and 
BMI < 30) are given in Table 1. It was found that the KOA 
patients with BMI ≥ 30, as well as those with BMI < 30, 
compared with their corresponding controls, had sig-
nificantly higher BMI (P = 0.0001 and P < 1 × 10–6, respec-
tively), hereditary burden (P = 0.0005 and P = 0.0005), 
incidences of cardiovascular (P = 0.0005 and P = 0.0005) 
and musculoskeletal diseases (P = 0.0006 and P = 0.0005) 
diseases. Among the KOA subjects (BMI ≥ 30 and 
BMI < 30), in comparison with their respective con-
trols, the percentage of individuals with a high level of 
professional physical activity was significantly higher 
(1.89 times, P = 0.002, and 2.05 times, P = 0.0005) and 
the proportion of individuals with a low level of pro-
fessional physical activity was significantly lower (2.42 
times, P = 0.0005, and 1.87 times, P = 0.0005, respec-
tively). Additionally, in KOA patients without obesity 
(BMI < 30), the percentage of individuals with low physi-
cal activity in their free time was significantly higher 
(1.25 times, P = 0.001) and the proportion of individu-
als with regular physical activity was significantly lower 
(3 times, P = 0.002), compared to the controls (Table 1). 
The above-mentioned environmental KOA risk/protec-
tive factors were included in the association analysis as 
covariates.

The statistical materials in Table S4 (Supplementary 
Information) (BMI < 30 cohort) and Table S5 (Supple-
mentary Information) (BMI ≥ 30 subject) demonstrate 
that the distribution (observed/expected) of the stud-
ied SNPs followed the HWE law (the Bonferroni cor-
rection based on the number of examined loci was used 
(Pbonf. = 0.00625 [0.05/8]).

Multidirectional relationships of the rs143384 GDF5 
with KOA in BMI-different groups were found: allele G of 



Page 4 of 14Novakov et al. Arthroplasty            (2024) 6:12 

this SNP was a KOA protective genetic variant in individu-
als with BMI ≥ 30 (OR 0.41 [95%CI 0.20–0.94], P = 0.019, 
Pperm. = 0.020, power 87.23%, recessive model) and was 
a disease risk variant in subjects with BMI < 30 (OR 1.32 
[95%CI 1.05–1.65], P = 0.016, Pperm. = 0.018, allele model; 
OR 1.44 [95%CI 1.10–1.86], P = 0.007, Pperm. = 0.009, 
power 89.33%, additive model; OR 1.67 [95%CI 1.10–2.52], 
P = 0.015, P perm. = 0.012, power 81.01%, dominant model) 
(Table 2).

Functionality of KOA‑associated rs143384 GDF5 (in silico 
data)
The polymorphism rs143384 (located in the 5’-UTR 
region of the GDF5 gene) and 9 SNPs strongly linked to 
it exhibited various epigenetic effects (They are signifi-
cant for the chromatin structure in the regions of poten-
tial promoters and enhancers, and affect the interaction 
of DNA with many transcription factors such as Ascl2, 
Foxa, TFE, Ets, Pitx2, SP2, LUN-1, EBF, Mxi1, Myf, Myc, 
NRSF, TAL1, YY1, Zfx, E2A, ELF1, etc.) (Table 3), includ-
ing cell cultures of adipose (adipose derived mesenchy-
mal stem cells, epigenomeID-E025/mesenchymal stem 

cells derived adipocyte cultured cells, epigenomeID-
E023/nuclei of adipose, epigenome ID-E063) (Data were 
obtained from the Haploreg database [48]).

The Blood eQTL browser showed that the minor allele 
G rs143384 is associated (PFDR = 0) with reduced mRNA 
level of UQCC (Z parameter -6.35) and CEP250 (-5.74) 
genes and a high production of EIF6 mRNA (11.29) in 
peripheral blood (Table S6, Supplementary Information). 
In addition, the involvement of the three loci (rs6060402, 
rs224329, rs224333) highly coupled with rs143384 in 
transcriptional regulation of the above three genes in 
peripheral blood was displayed in Table S7 (Supplemen-
tary Information).

Based on experimental data of GTEx portal, rs143384 
GDF5 has been identified as a modulator of multiple 
genes expression (21 genes/more 30 organs) and alterna-
tive splicing (8 genes/above 20 organs), including eight 
genes in adipose tissue (expression quantitative locus/
trait [eQTL]: CPNE1, EDEM2, GDF5, PROCR, RPL36P4, 
UQCC1; splicing quantitative locus/trait [sQTL]: RBM39, 
UQCC1, ERGIC3) (Tables S8 and S9, Supplementary 
Information). Remarkably, the G allele of the rs143384 

Table 1  Phenotypic characteristics of the study participants

a The presence of KOA in relatives of the first degree of kinship (mother, father)

P values < 0.05 are shown in bold

Parameters BMI ≥ 30 BMI < 30

KOA patients X ± SD/% (n) Controls X ± SD/% (n) P KOA patients X ± SD/% (n) Controls X ± SD/% (n) P

n 255 167 - 245 433 -

Age, years (min–max) 52.55 ± 5.48 53.54 ± 6.15 0.12 52.84 ± 5.88 52.88 ± 6.81 0.79

Men/Women 33.73 (86) / 66.27 (169) 38.92 (65) / 61.08 (102) 0.33 49.80 (122) / 50.20 (123) 40.65 (176) / 59.35 (257) 0.03

BMI, kg/m2 34.50 ± 3.50 32.72 ± 2.32 0.0001 26.33 ± 2.32 25.00 ± 2.15  < 1 × 10–6

Height, cm 167.89 ± 7.23 166.78 ± 7.67 0.20 170.57 ± 8.23 169.23 ± 7.56 0.02

Alcohol (yes) 76.08 (194) 76.05 (127) 1.00 77.14 (189) 75.06 (325) 0.61

Smoker (yes) 25.10 (64) 22.16 (37) 0.56 24.49 (60) 21.48 (93) 0.42

Hereditary burden (yes)a 36.86 (94) 5.99 (10) 0.0005 41.22 (101) 15.94 (69) 0.0005

Occupation-related physical workload

  Low 16.08 (41) 38.92 (65) 0.0005 20.82 (51) 39.03 (169) 0.0005

  Medium 53.33 (136) 44.91 (75) 0.11 46.94 (115) 45.27 (196) 0.73

  High 30.59 (78) 16.17 (27) 0.002 32.24 (79) 15.70 (68) 0.0005

Leisure time physical activity

  Little 68.63 (175) 59.28 (99) 0.06 70.61 (173) 56.58 (245) 0.001

  Irregular 24.71 (63) 28.74 (48) 0.42 25.31 (62) 31.18 (135) 0.13

  Regular 6.66 (17) 11.98 (20) 0.09 4.08 (10) 12.24 (53) 0.002

Concomitant pathology, % (n)

  Digestive system 11.37 (29) 5.39 (9) 0.05 12.65 (31) 10.62 (46) 0.50

  Cardiovascular system 35.29 (90) 14.97 (25) 0.0005 38.37 (94) 19.17 (83) 0.0005

  Senitourinary system 4.71 (12) 9.58 (16) 0.08 6.94 (17) 4.39 (19) 0.21

  Central nervous system 12.16 (31) 10.18 (17) 0.64 8.57 (21) 8.08 (35) 0.94

  Musculoskeletal system 10.20 (26) 0 (0) 0.0006 5.31 (13) 0 (0) 0.0005

  Endocrine system 11.37 (29) 8.98 (15) 0.53 8.98 (22) 5.54 (24) 0.12

  Respiratory system 11.76 (30) 8.98 (15) 0.46 11.84 (29) 9.70 (42) 0.46
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locus was correlated with low expression/splicing of four/
two genes (CPNE1, EDEM2, PROCR, UQCC1/ERGIC3, 
RBM39) in adipose tissue and high expression/splicing of 
two/one genes (GDF5, RPL36P4/UQCC1) in this tissue 
(Tables S8 and S9, Supplementary Information). Among 
nine high-linked SNPs, eight loci were eQTL (21 genes 
including seven genes in adipose tissue: CEP250, CPNE1, 
EDEM2, PROCR, RP4-614O4.13, RPL36P4, UQCC1) 
(Table S10, Supplementary Information) and sQTL (10 
genes including five genes in adipose tissue: EIF6, ERGIC3, 
FER1L4, RBM39, UQCC1) (Table S11, Supplementary 
Information).

Overall, first of all, we found very pronounced rs143384 
GDF5 functionality in relation to 26 genes in a variety of 
organs (more than thirty ones) which interactions due co-
expression (the percentage contribution was the highest and 
amounted to 85.77%), physical interactions (12.16%) and 
co-localization (2.07%) (Fig. 1, GeneMANIA data) with the 
leading role of paired interactions such as LAP3–RBM39, 
NQO2–NQO1, TRPC4AP–MYH7B, BRD2–EPB41L1, 
DPM3–CEP250 (weight indicators 0.21–0.62) (Table S12, 
Supplementary Information). Secondly, considerable func-
tionality of the rs143384 GDF5 in adipose tissue in relation 
to nine genes (CPNE1, EDEM2, ERGIC3, GDF5, GDF5OS, 

PROCR, RBM39, RPL36P4, UQCC1) was found with com-
plete dominance (100%) of co-expression in their interac-
tions (Fig. 2 and Table S13, GeneMANIA data) and involved 
above genes set in regulation of the pathways of apoptosis of 
striated muscle cells (PFDR = 0.004).

Discussion
In the present study, the effect of obesity on the associa-
tion of the rs143384 GDF5 with KOA was shown: allele 
G of this SNP was a KOA protective factor in individu-
als with BMI ≥ 30 (OR 0.41) and disease risk marker in 
individuals with BMI < 30 (OR 1.32–1.67). Polymorphism 
rs143384 GDF5 exerted its regulatory effects in relation 
to 9 genes in adipose tissue.

A multitude of literature data confirmed that high BMI 
and obesity are the leading risk factors for the develop-
ment and progression of OA [29, 73, 74]. In the sample 
we studied, obesity was also a significant risk factor for 
KOA (OR = 6.73, P = 0.005). It is known that the key points 
in the pathogenesis of KOA in obesity are determined by 
excessive mechanical stress on the joint, chronic inflam-
mation in adipose tissue and dyslipidemia, secretion of 
proinflammatory cytokines and adipokines by adipose tis-
sue; cytokine secretion by infrapatellar adipose tissue [2]. 

Fig. 1  The interaction networks of the candidate genes associated with rs143384 (eQTL/sQTL/regulatory effects this SNP) inferred using 
GeneMANIA (http://​genem​ania.​org)

http://genemania.org
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Adipokines (leptin, resistin, etc.) and cytokines (TNFA, 
IL1, IL6) produced by adipose tissue (both local and sys-
temic adipose tissue), in turn, can affect pathological 
processes in the tissues of the joint and bones, such as 
cartilage degradation, inflammatory processes in the syno-
vial membrane, bone erosion [2, 75, 76]. It is worth noting 
that infrapatellar adipose tissue or Goff’s fat cushion plays 
important roles in the pathogenesis of KOA [2]. On the 
one hand, the damping role of this adipose tissue is known 
to be due to the damping of mechanical stress under load 
on the joint (A redistribution of adipose tissue takes place.) 
[77]. On the other hand, KOA is often accompanied by 
inflammation of infrapatellar adipose tissue with increased 
expression of inflammatory mediators such as IL-6, adip-
sin, visfatin and adiponectin, which also support inflam-
matory processes in other joint tissues [78, 79]. It has been 
shown that an increase in body mass index by 5  kg/m2 
is associated with a rise of 35% in the risk of developing 
KOA [80]. It is known that obesity often leads to the pro-
gression of KOA [17] and can cause a more severe course 
of the disease [81]. A study by Vasilic-Brasnjevic et  al. 
showed that obesity (BMI ≥ 30 kg/m2) was a risk factor for 
the development of stage 3–4 KOA in patients older than 
50 years [81]. The presence of overweight, grade I and II 
obesity increased the risk of KOA by 2, 3.1 times and 4.7 
times, respectively [73]. Takahashi et al. [17] demonstrated 
that 75% of obese KOA patients had disease progression 
(assessed on the Kellgren-Lawrence scale).

OA and obesity are diseases resulting from the interac-
tion of multiple genetic and environmental factors [82–85] 
and sharing common pathophysiological mechanisms [29]. 

Obesity is considered a chronic inflammatory disease char-
acterized by the production of cytokines and cytokine-like 
molecules (adipokines) that can affect various body tissues 
[86], including knee joint tissues. It is worth noting that 
the inflammatory reaction is also one of the main patho-
genetic links of OA [2, 87]. The relationship between dif-
ferent genetic variants and BMI in KOA patients has been 
shown [21–28], among which there are a large number of 
genes associated with metabolic disorders (FTO, ADI-
POQ, LEP, SREBP2) and other genes (GDF5, TGFB1, etc.). 
At the same time, the effect of overweight and obesity on 
the association of GWAS-significant loci (rs8044769 FTO 
and rs143383 GDF5) with KOA has been examined only 
in a small number of studies [25]. It should be noted that 
no significant association was found between the GWAS 
locus rs8044769 FTO and KOA in overweight and obese 
patients [25]. Conversely, Zhang et  al. showed that the 
rs143383 GDF5 was associated with KOA both in subjects 
with BMI ≥ 24 (OR = 2.36–2.45) and in those with BMI < 24 
(OR = 1.63–3.77). Thus, the allele T of the rs143383 GDF5 
was a risk factor for KOA in both groups [28]. Accord-
ing to our data, the variant G rs143384 GDF5 was a KOA 
risk factor in individuals with BMI < 30 (OR = 1.32–1.67) 
and a protective factor against KOA in BMI ≥ 30 subjects 
(OR = 0.41). The association of GDF5 gene (rs143384) with 
KOA was established in four previously published GWAS 
[40, 42–44]. Two papers [40, 43] reported the association 
of the allelic variant A (rs143384) with KOA in Europeans 
(parameter OR = 1.10 was the same in both studies), and 
one study [44] showed the association in mixed samples of 
European and Asian origins (OR = 1.07). It is worth noting 

Fig. 2  The interaction networks of the candidate genes in adipose tissue associated with rs143384 (eQTL/sQTL/regulatory effects this SNP) inferred 
using GeneMANIA (http://​genem​ania.​org)

http://genemania.org


Page 9 of 14Novakov et al. Arthroplasty            (2024) 6:12 	

that, in these three GWAS, the allele A of the GDF5 locus 
(rs143384) is risky for the development of KOA. Another 
study [42] demonstrated that the allele G of rs143384 was a 
KOA protective factor in Caucasians (OR = 0.91). It should 
be noted that, in our work, the allele G of rs143384 also was 
of protective value for KOA in the BMI ≥ 30 group.

There are a number of studies demonstrating the rela-
tionship between the rs143384 GDF5 and various muscu-
loskeletal pathologies of the lower extremities, including 
OA of other sites or body parts [88–94]. Some studies 
have identified associations of the rs143384 allele variant 
A with knee pain [90, 92, 94]. Other studies have shown 
the connection of this GDF5 gene locus with hip dyspla-
sia [89, 91], OA of the hand [93], and congenital hip dis-
location [88].

The relationship between rs143384 GDF5 and body 
weight, as well as various anthropometric indices (body 
fat distribution, waist-to-hip ratio, waist-hip index, etc.), 
which may be associated with overweight or obesity, was 
demonstrated in previously GWAS [95–101]. The G allele 
(rs143384) has been found to be associated with lower body 
fat distribution (leg fat ratio) (β = -0.031, P = 3 × 10–43) [98], 
waist-to-hip ratio adjusted for BMI (β = -0.035, P = 3 × 10–28) 
[99], waist-hip index (β = -0.031, P = 6 × 10–23) [99]; in turn, 
allele A (rs143384) was linked to a higher waist-to-hip 
ratio adjusted for BMI (β = 0.02, P = 2 × 10–27) [97]. On the 
contrary, other studies [95, 96] showed that the A allele of 
rs143384 was correlated with a lower hip circumference 
adjusted for BMI (β = -0.044, P = 1 × 10–31) [95], (β = -0.042, 
P = 3 × 10–7) [96]. Association of rs143384 GDF5 with body 
weight has been shown in two papers [96; 100], in which 
the G allele was associated with weight gain (β = 0.028, 
P = 3 × 10–57) in the mixed samples of Europeans and Asians 
[100], and the A allele had a link with weight loss (β = -0.041, 
P = 2 × 10–10) in Europeans [96]. Hübel et  al. revealed that 
rs143384 GDF5 was associated with fat-free muscle mass 
(β = -0.390, P = 6 × 10–68) [101] and a study by Guilherme 
et al. found that the G rs143384 allele of the GDF5 gene was 
associated with a low BMI in Caucasians (P = 1.2 × 10–14) 
[102]. Thus, it should be mentioned that, on the one hand, 
the association of rs143384 GDF5 with various anthro-
pometric characteristics was proven in several previously 
GWAS; on the other hand, there is inconsistencies among 
the results about the association of this allelic variant with 
the aforementioned characteristics (risk/protective effect 
on BMI/body fat distribution/waist-to-hip ratio of differ-
ent allelic variants of rs143384) in various cohorts (popula-
tions). Our study also revealed a multidirectional nature of 
the association between the rs143384 GDF5 and KOA asso-
ciation (the risky nature in individuals with BMI < 30 and the 
protective role in the group with BMI ≥ 30).

Interestingly, this study (in silico materials) dem-
onstrated that, in adipose tissue, rs143384 GDF5 had 

considerable functionality (expression; splicing; epige-
netic) in relation to nine genes (GDF5, CPNE1, EDEM2, 
ERGIC3, GDF5OS, PROCR, RBM39, RPL36P4, UQCC1) 
involved in regulation of pathways of apoptosis of stri-
ated muscle cells. Moreover, the G allele rs143384 was 
associated with increased GDF5 gene expression. Prem-
ised on this, it can be assumed that in obese individuals 
with the G allele, the amount of the protein product of 
the GDF5 gene will be maximum (plenty of adipose tis-
sue due to GDF5 production area and the presence of a 
highly productive allele G rs143384) and significantly 
exceed the level of GDF5 expression (GDF5 production) 
in obese individuals without the G allele (a lot of adi-
pose tissue but the presence of a low-productive allele 
A rs143384). This may explain the protective value for 
KOA of the highly productive allele G rs143384 in obese 
individuals, established in our study. GDF5 (growth dif-
ferentiation factor 5) is a member of the bone morpho-
genetic protein (BMP) gene family and the TGF-beta 
superfamily and plays an important role in skeletal 
development [103], inflammatory reactions, and tissue 
damage [104]. Overexpression of GDF5 in human mes-
enchymal stem cells leads to increased chondrogenesis 
in  vitro [105]. In mice models of OA, high expression 
of GDF5 in the cartilage was detected during its recov-
ery after unilateral destabilization of the medial menis-
cus [106]. Allelic variants A and G rs143384 exert an 
important modifying effect on the KOA-risk impact 
of other loci. It was revealed that the T allele rs143383 
(It was associated with the OA risk), which is linked to 
rs143384 (r2 = 0.82), caused the reduced transcription of 
the GDF5 gene in chondrogenic cells [107–109]. It has 
been shown that the rs143384 locus is able to influence 
the “phenotypic effects” of rs143383 with respect to the 
GDF5 gene (These results were obtained on the model 
of the luciferase reporter assays of GDF5 promoter/5’-
UTR constructs in the chondrogenic (CH8), adipogenic 
(SW872) and osteogenic (MG63) cell lines). The T allele 
of rs143383, which is risky for OA, causes a decrease in 
luciferase activity relative to the alternative allele C for 
it only in the presence of the A allele of rs143384 [110]. 
Increased expression of the GDF5 gene was observed 
in brown adipose tissue in obese mice [111]. The study 
by Yang et  al. showed that systemic overexpression of 
GDF5 in adipocytes reduced non-alcoholic liver obesity 
caused by a high-fat diet in mice [112]. Pei et al. exhib-
ited that GDF5 played an adipogenic role in the differen-
tiation of 3T3-L1 preadipocytes [113]. Thus, the GDF5 
gene is characterized by a pleotropic effect and, accord-
ingly, affects not only KOA, but also the processes taking 
place in adipose tissue, which is just as important, if indi-
rectly, for the pathophysiology of KOA. In general, as we 
can assume in obese individuals, the highly productive 
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G allele rs143384 (which determines overexpression 
of GDF5) acts as a protective factor against KOA due 
to the apparent effects of high concentrations of GDF5 
(increased chondrogenesis, etc.).

At the same time, we obtained data on the KOA-risk 
role of polymorphism rs143384 GDF5 (allele G) in non-
obesity individuals. We speculate that this relationship 
may be based on the following mechanisms. Firstly, a 
significant disadvantage of expression of GDF5 in indi-
viduals with a low content of adipose tissue (little adi-
pose tissue due to small source of production of GDF5) 
and consequently weak chondrogenic and adipogenic 
effects of GDF5 led to an increased risk of develop-
ing KOA. Secondly, in individuals with low fat mass, an 
increased risk of KOA development in the presence of 
the G allele rs143384 may be associated with other genes 
whose expression/splicing level is affected by this poly-
morphism (CPNE1, EDEM2, PROCR, UQCC1, RPL36P4/
ERGIC3, RBM39). For instance, due to a significant “defi-
ciency” of protein products of genes (CPNE1, EDEM2, 
PROCR, UQCC1), their expression can be extremely 
reduced in individuals carrying reduced fat mass and 
a low-productive G allele rs143384 (KOA risk factor in 
individuals without obesity), which may, as an impor-
tant pathogenetic factor, significantly contribute to the 
development of KOA. So, CPNE1, encoding Copine1, a 
soluble calcium-dependent membrane-binding protein, 
affects the length of myotubes (knockdown of CPNE1 
gene increases the length of myotubes) and works as a 
modifier of muscle mass in humans in  vitro, though it 
is not definitively clear how alterations in myogenesis 
indicators in  vitro relate to the hypertrophy/hyperpla-
sia of fiber in vivo [114]. EDEM2 encodes an ER degra-
dation enhancer, mannosidase alpha-like 2, involved in 
carbohydrate metabolism (EDEM 2 identifies misfolded 
endoplasmic reticulum glycoproteins and targets them 
for destruction), and its expression in the skeletal mus-
cle tissue of geriatric vs. young adult animals (dogs) dif-
fered significantly, depending on the diet [115]. PROCR, 
encoding the endothelial protein C receptor), is a “key” 
regulator of the protein C pathway mediating the inter-
action between coagulation and pro-inflammatory/anti-
inflammatory processes in vessels [116]. QCC1 encodes a 
trans-membrane protein ubiquinol-cytochrome-c reduc-
tase complex chaperone and is involved in the patho-
physiology of OA [117]. Moreover, it is also associated 
with lipid metabolism (arm fat mass) [118]. However, it is 
important to emphasize that there is currently no defini-
tive or flimsy evidence on this issue in the literature, and 
further epidemiological and experimental studies on this 
theme are needed.

The data obtained in the work on the genetic fea-
tures of KOA in individuals with and without obesity is 

traumatologically and orthopedically of practical value 
and can help distinguish between individuals at risk for 
KOA development and clinically healthy population. 
Taking into account the presence/absence of obesity 
will allow for timely implementation of measures aimed 
at preventing the disease (for example, achieving weight 
loss in obese individuals with a genetic high-risk factor 
for KOA (allele A rs143384), etc.).

Conclusion
This study showed that obesity exerted an effect on 
the associations of the rs143384 GDF5 with the KOA 
risk. This polymorphism is of “protective” value in the 
BMI ≥ 30 subjects and a “risk” for the development of 
KOA in those with BMI < 30.
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