Skip to main content

Call for papers

Advances in Artificial Intelligence and Robotics in Joint Arthroplasty

New Content Item


With ever-increasing patient expectations of enduring function and quality-of-life preservation, there exists an ongoing pressure to seek newer and better ways to diagnose and manage individuals with disabling joint pathology. Internationally, most contemporary estimates predict a rapidly increasing demand for joint replacement surgery in the coming two decades — a need that will likely far exceed existing surgical capacity. Current means will need to evolve towards newer / novel approaches to meet the rising demand in a climate whereby cost and resource accountability (including sustainability) and consistent achievement of lasting, high functional, standards will be paramount.

In many realms, technology-assisted surgery has already held the potential to improve multiple points of the arthroplasty patient journey — from initial diagnosis through to medium-term (and possibly longer-term) postoperative functional outcomes. Both artificial intelligence (AI) applications and the use of intra-operative robotics are exciting areas of active development and application.

While they have generated much enthusiasm (and marketing), there is a need for scientists and clinicians alike to ensure that the evidence base that underpins the use of such technologies stays ahead of the enthusiastic hype. While cutting-edge work in surgical robotics aims to improve the precision and performance of operative plans (and hence patient outcomes and satisfaction) on an individual patient level, these complex and highly sophisticated machines bring their own unique set of challenges including training and learning curves, alterations to existing surgical techniques and workflows, and often the considerable associated expense with the purchase and ongoing maintenance.

Artificial intelligence has already been explored in a wide range of applications relevant to the care of arthroplasty patients from diagnosis and imaging interpretation to patient selection and educational metrics, to administrative and cost-funding considerations, to augmented operative planning, and the predictive utility for a number of medical (and non-medical) outcomes. Concerns have been raised previously about the wider generalisability of much of the published AI literature to date, and a lack of reproduction of key findings away from algorithm designer sites or highly specialized quaternary centers.


With guest editing from Prof. Yan Wang (Editor-in-Chief of Arthroplasty) and Dr. Quanbo Ji, the journal launched its first Special Issue “Artificial Intelligence in Joint Arthroplasty” in 2020 and operated successfully. Based on the great support from the authors, reviewers as well as all audiences, more than ten papers have been published in that Article Collection. Coming with the increasing attention of orthopaedic surgeons, we would like to keep up with this eye-catching theme with a new topic of “Advances in Artificial Intelligence and Robotics in Joint Arthroplasty” continuously.                 

This Special Issue of Arthroplasty aims to provide an opportunity for clinical researchers from across the globe to contribute to the advancement of knowledge in the area of contemporary arthroplasty, specifically relating to robotic and AI applications. We seek to bring together a number of high-quality works in these fields to serve as both an informative and educational platform, but also to strengthen the foundation of science that supports the use of these exciting new technologies. All works accepted for publication will undergo a rigorous peer review process.

Scope and specific themes

We encourage diversity of content from both basic science and clinical research spheres. Original clinical research, structured (systematic) reviews and proof-of-concept papers will be considered. Such works may include, but not be limited to:

  • Advancements in robotic technologies (including novel applications) and the clinical evidence that might support wider uptake.
  • Cost and outcome analyses.
  • Head-to-head comparisons between the performance and outcomes of arthroplasty surgery and either conventional approaches and/or computer-navigated methods.
  • Applications with demonstrated benefit to patient-reported outcome measures (i.e., PROMs).
  • Registry-level evidence of the performance and survivorship of robot-assisted arthroplasty procedures.
  • Robotic applications in complex primary and revision surgery.
  • The use of AI in optimized implant prediction/templating.
  • The role of AI in improving patient outcomes.
  • AI utility in optimized patient selection pathways.
  • Demonstration of whole episode-of-care cost savings through the establishment and implementation of AI technologies.
  • The clinical outcomes of the use of validated AI applications in non-specialist centers (i.e., reflecting more generalizable use).

Submissions of both commissioned and non-commissioned content should be formatted according to the journal’s guidelines. All manuscripts will undergo standard peer review and must be submitted through Editorial Manager.

Submission Deadline: April 30, 2024

Affiliated with

Annual Journal Metrics

  • 2022 Citation Impact
    0.9 - 2-year Impact Factor
    1.2 - 5-year Impact Factor
    0.492 - SNIP (Source Normalized Impact per Paper)
    0.343 - SJR (SCImago Journal Rank)

    2023 Speed
    5 days submission to first editorial decision for all manuscripts (Median)
    105 days submission to accept (Median)

    2023 Usage 
    183 Altmetric mentions