Periprosthetic joint infection is the most disastrous complication of a total hip arthroplasty. The infection endangers the functional utility of the hip joint, although rarely. It also threatens the life of the patient. The primary step in managing a PJI is to diagnose it. Diagnosing a periprosthetic joint infection is a challenge preoperatively. Equivocal results have been found upon comparison of multiple modalities of diagnosis.
Although most failures tend to occur within the first year after implantation, infections could take place after many years of apparently successful treatment [4]. In our study, the mean presentation of periprosthetic hip infection was 5.90 years after the primary surgery (range 2–15 years). None of the patients had undergone a revision hip arthroplasty for the same hip before or undergone any surgery in the last 1 year which could have contributed to the increased levels of serological markers at the time of presentation. Four patients presented with a quiescent non-draining sinus. This is considered to be a major diagnostic criterion of PJI as per the Musculoskeletal Infection Society criteria [5]. Seven patients had intraoperative purulence and all those went on for a two-stage revision arthroplasty. The so-called standard for diagnosing infection at the site of a total hip arthroplasty has long been intra-operative cultures [6, 7]. An obvious difficulty with intra-operative cultures is the time required to obtain useful results. This delay prevents intra-operative cultures from being useful in decision-making during an equivocal procedure.
The technique of using frozen section histology as an intra-operative tool was first mentioned by Charosky et al. [8], who concluded that if at the time of re-operation, frozen section tissues from the pseudocapsule showed acute inflammatory changes or severe chronic inflammation, that could be presumptive evidence of infection. Most of the present literature compares frozen section histology to intraoperative culture as a gold standard. Considering the fallacies of intraoperative culture, we tested frozen section histology as a separate entity and calculated the positive and negative outcomes for the same. With this we would know if the test is reliable to rule out presence of infection at the time of re-implantation with the prosthesis. Frozen section analysis is unfortunately not foolproof and has its own drawbacks. The surgeon, who is collecting the sample from the suspicious areas, is doing so with naked eyes. Thus, the tissue sample selection is subjective. The sample has to be handled with care while being transferred to the pathology department. A skilled and experienced pathologist should analyse all the tissue sections. The analysis may skew in any direction if any of the above-mentioned subjective parameters are not managed carefully.
A negative result on both ESR & CRP is extremely good in ruling out active periprosthetic joint infection. A positive result on both tests; is more reliably indicative of periprosthetic joint infection compared to a positive result on just one test. In a study of 414 revision total hip arthroplasties and 538 total knee arthroplasties, Mc Arthur et al. [9] reported that the incidence of seronegative PJI was 4%, and the sensitivity of ESR and CRP was 81 and 93%, respectively. They claimed that a subset of patients with PJI will present with a normal ESR and CRP. Once diagnosed, most seronegative PJIs were successfully treated with a two-stage revision.
Frozen section study was done at both stages of revision at our institute. Fifteen patients who had positive frozen section (> 5 PMN’s / HPF) in the first stage were treated by prosthesis removal and cement spacer application. Six patients had negative frozen section (≤5PMN’s/HPF) values in the first stage and thus primary one stage revision hip arthroplasty was undertaken. Fourteen out of the 15 patients in the second stage had a negative frozen section result and underwent revision hip arthroplasty. One patient underwent debridement and repeated cement spacer application since the frozen section was positive even on the second stage. The patient eventually underwent revision hip arthroplasty in the subsequent stage. One serial follow-up, for a minimum of 1 year and a maximum up to 2 yearsshowed that no patient had any clinical, serologically and radiological evidence of infection. Post analysis, the frozen section analysis predicted all true negatives and showed a 100% specificity in diagnosing PJI. One patient had elevated ESR (34 mm/hr) duringa 1-year follow-up. The CRP and other parameters were all within normal range. There were no other signs of infection, thus this raised ESR could be attributable to other causes.
Four patients in the second stage of revision arthroplasty had elevated serological markers. Two patients had both increased ESR and CRP while the other two patients had only ESR or CRP respectively. Intra-operatively, the frozen section analysis of these 4 patients was negative and a revision prosthesis was implanted after cement spacer removal even though the serological values were raised. On follow-up, these patients had no serological, clinical or radiological signs of infection.
In a systematic review and a meta-analysis of longitudinal studies, Tsaras et al. compared frozen section histologic results with simultaneously obtained microbiologic culture[10], they concluded that intra-operative frozen sections of periprosthetic tissues performed well in predicting a diagnosis of culturally-positive periprosthetic joint infection but had moderate accuracy in ruling out the diagnosis.
In our series, 3 patients were managed at another center with oral antibiotics for their apparent infection, one had stopped the intake of antibiotics 1 week prior to presentation to our centre; while the other 2 patients still continued to take the oral antibiotics at the time of presentation. These patients had relatively lower ESR and CRP values compared to the rest of the patients in the study, but their frozen section values ranged from 8 to 12 PMN’s / HPF at the time of the first- stage revision arthroplasty. All these 3 patients were managed with a two-stage revision arthroplasty.
Della Valle et al. [11] reported that intra-operative analysis of frozen sections at the time of re-implantation had a sensitivity of 25%, a specificity of 98%, a positive predictive value of 50%, a negative predictive value of 95% and an accuracy rate of 94%. Sensitivity was increased to 75% when the authors changed the criteria for a positive result to at least one polymorphonuclear leukocytes found in the frozen section. However, both specificity and accuracy decreased to 80%. We used Mirra’s [2] criteria and classified a frozen section result as positive if > 5 PMN’s/ HPF were present. In a meta-analysis published in 2013 [12], it was found that both thresholds, five and ten polymorphonuclear leukocytes per high-power field, yielded acceptable results in frozen section tests for periprosthetic infection, although a threshold of ten had a greater specificity, without decreasing sensitivity. The meta-analysis indicated that although both the two thresholds are stable and effective, a threshold of ten polymorphonuclear leukocytes per high-power field is better for diagnosing periprosthetic infections.