Bellman R. An introduction to artificial intelligence: Can computers think? 1978.
Google Scholar
Jones LD, Golan D, Hanna SA, Ramachandran M. Artificial intelligence, machine learning and the evolution of healthcare: a bright future or cause for concern? Bone Joint Res. 2018;7(3):223–5. https://doi.org/10.1302/2046-3758.73.BJR-2017-0147.R1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Panchmatia JR, Visenio MR, Panch T. The role of artificial intelligence in orthopaedic surgery. Br J Hosp Med (Lond). 2018;79(12):676–81. https://doi.org/10.12968/hmed.2018.79.12.676.
Article
Google Scholar
Bini SA. Artificial intelligence, machine learning, deep learning, and cognitive computing: what do these terms mean and how will they impact health care? J Arthroplast. 2018;33(8):2358–61. https://doi.org/10.1016/j.arth.2018.02.067.
Article
Google Scholar
Bini SA, Shah RF, Bendich I, Patterson JT, Hwang KM, Zaid MB. Machine learning algorithms can use wearable sensor data to accurately predict six-week patient-reported outcome scores following joint replacement in a prospective trial. J Arthroplast. 2019;34(10):2242–7. https://doi.org/10.1016/j.arth.2019.07.024.
Article
Google Scholar
Shahid N, Rappon T, Berta W. Applications of artificial neural networks in health care organizational decision-making: a scoping review. Plos One. 2019;14(2):e0212356. https://doi.org/10.1371/journal.pone.0212356.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sterne JA, Hernan MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ. 2016;355i4919. https://doi.org/10.1136/bmj.i4919.
Riddle DL, Jiranek WA, Hayes CW. Use of a validated algorithm to judge the appropriateness of total knee arthroplasty in the United States: a multicenter longitudinal cohort study. Arthritis Rheumatol. 2014;66(8):2134–43. https://doi.org/10.1002/art.38685.
Article
PubMed
PubMed Central
Google Scholar
Riddle DL, Perera RA. Appropriateness and total knee arthroplasty: an examination of the American Academy of Orthopaedic surgeons appropriateness rating system. Osteoarthr Cartil. 2017;25(12):1994–8. https://doi.org/10.1016/j.joca.2017.08.018.
Article
CAS
Google Scholar
Katz JN, Winter AR, Hawker G. Measures of the appropriateness of elective Orthopaedic joint and spine procedures. J Bone Joint Surg Am. 2017;99(4):e15. https://doi.org/10.2106/JBJS.16.00473.
Article
PubMed
Google Scholar
Barry MJ, Edgman-Levitan S. Shared decision making-pinnacle of patient-centered care. N Engl J Med. 2012;366(9):780–1. https://doi.org/10.1056/NEJMp1109283.
Article
CAS
PubMed
Google Scholar
Rabi DM, Kunneman M, Montori VM. When guidelines recommend shared decision-making. JAMA. 2020;323(14):1345–6. https://doi.org/10.1001/jama.2020.1525.
Article
PubMed
Google Scholar
Noonan VK, Lyddiatt A, Ware P, et al. Montreal accord on patient-reported outcomes (PROs) use series - paper 3: patient-reported outcomes can facilitate shared decision-making and guide self-management. J Clin Epidemiol. 2017:89125–35. https://doi.org/10.1016/j.jclinepi.2017.04.017.
Yi PH, Wei J, Kim TK, et al. Automated detection & classification of knee arthroplasty using deep learning. Knee. 2020;27(2):535–42. https://doi.org/10.1016/j.knee.2019.11.020.
Article
PubMed
Google Scholar
Shah RF, Bini SA, Martinez AM, Pedoia V, Vail TP. Incremental inputs improve the automated detection of implant loosening using machine-learning algorithms. Bone Joint J. 2020;102-B(6_Supple_A):101–6. https://doi.org/10.1302/0301-620X.102B6.BJJ-2019-1577.R1.
Article
PubMed
Google Scholar
Ramkumar PN, Karnuta JM, Navarro SM, et al. Deep learning preoperatively predicts value metrics for primary Total knee arthroplasty: development and validation of an artificial neural network model. J Arthroplast. 2019;34(10):2220–2227 e2221. https://doi.org/10.1016/j.arth.2019.05.034.
Article
Google Scholar
Bansback N, Trenaman L, MacDonald KV, et al. An individualized patient-reported outcome measure (PROM) based patient decision aid and surgeon report for patients considering total knee arthroplasty: protocol for a pragmatic randomized controlled trial. BMC Musculoskelet Disord. 2019;20(1):89. https://doi.org/10.1186/s12891-019-2434-2.
Article
PubMed
PubMed Central
Google Scholar
Jayakumar P, Bozic KJ. Advanced decision-making using patient-reported outcome measures in total joint replacement. J Orthop Res. 2020;38(7):1414–22. https://doi.org/10.1002/jor.24614.
Article
PubMed
Google Scholar
Jayakumar P, Moore MG, Furlough KA, et al. Comparison of an artificial intelligence-enabled patient decision aid vs educational material on decision quality, shared decision-making, patient experience, and functional outcomes in adults with knee osteoarthritis: a randomized clinical trial. JAMA Netw Open. 2021;4(2):e2037107. https://doi.org/10.1001/jamanetworkopen.2020.37107.
Article
PubMed
PubMed Central
Google Scholar
Karnuta JM, Luu BC, Roth AL, et al. Artificial intelligence to identify arthroplasty implants from radiographs of the knee. J Arthroplast. 2021;36(3):935–40. https://doi.org/10.1016/j.arth.2020.10.021.
Article
Google Scholar
Schwartz AJ, Clarke HD, Spangehl MJ, Bingham JS, Etzioni DA, Neville MR. Can a convolutional neural network classify knee osteoarthritis on plain radiographs as accurately as fellowship-trained knee arthroplasty surgeons? J Arthroplast. 2020;35(9):2423–8. https://doi.org/10.1016/j.arth.2020.04.059.
Article
Google Scholar
Aim F, Lonjon G, Hannouche D, Nizard R. Effectiveness of virtual reality training in Orthopaedic surgery. Arthroscopy. 2016;32(1):224–32. https://doi.org/10.1016/j.arthro.2015.07.023.
Article
PubMed
Google Scholar
Goh GS, Lohre R, Parvizi J, Goel DP. Virtual and augmented reality for surgical training and simulation in knee arthroplasty. Arch Orthop Trauma Surg. 2021;141(12):2303–12. https://doi.org/10.1007/s00402-021-04037-1.
Wallace SJ, Murphy MP, Schiffman CJ, Hopkinson WJ, Brown NM. Demographic data is more predictive of component size than digital radiographic templating in total knee arthroplasty. Knee Surg Relat Res. 2020;32(1):63. https://doi.org/10.1186/s43019-020-00075-y.
Article
PubMed
PubMed Central
Google Scholar
Kunze KN, Polce EM, Patel A, Courtney PM, Levine BR. Validation and performance of a machine-learning derived prediction guide for total knee arthroplasty component sizing. Arch Orthop Trauma Surg. 2021;141(12):2235–44. https://doi.org/10.1007/s00402-021-04041-5.
Li Z, Zhang X, Ding L, et al. Deep learning approach for guiding three-dimensional computed tomography reconstruction of lower limbs for robotically-assisted total knee arthroplasty. Int J Med Robot. 2021:e2300. https://doi.org/10.1002/rcs.2300.
Tsukada S, Ogawa H, Nishino M, Kurosaka K, Hirasawa N. Augmented reality-based navigation system applied to tibial bone resection in total knee arthroplasty. J Exp Orthop. 2019;6(1):44. https://doi.org/10.1186/s40634-019-0212-6.
Article
PubMed
PubMed Central
Google Scholar
Pokhrel S, Alsadoon A, Prasad PWC, Paul M. A novel augmented reality (AR) scheme for knee replacement surgery by considering cutting error accuracy. Int J Med Robot. 2019;15(1):e1958. https://doi.org/10.1002/rcs.1958.
Article
PubMed
Google Scholar
Verstraete MA, Moore RE, Roche M, Conditt MA. The application of machine learning to balance a total knee arthroplasty. Bone Jt Open. 2020;1(6):236–44. https://doi.org/10.1302/2633-1462.16.BJO-2020-0056.R1.
Article
PubMed
PubMed Central
Google Scholar
Chiang CY, Chen KH, Liu KC, Hsu SJ, Chan CT. Data collection and analysis using wearable sensors for monitoring knee range of motion after Total knee arthroplasty. Sensors (Basel). 2017;17(2). https://doi.org/10.3390/s17020418.
Kang K, Geng Q, Xu HT, et al. Clinical study of a new wearable device for rehabilitation after total knee arthroplasty. Zhonghua Yi Xue Za Zhi. 2018;98(15):1162–5. https://doi.org/10.3760/cma.j.issn.0376-2491.2018.15.008.
Article
CAS
PubMed
Google Scholar
Ramkumar PN, Haeberle HS, Ramanathan D, et al. Remote patient monitoring using Mobile health for Total knee arthroplasty: validation of a wearable and machine learning-based surveillance platform. J Arthroplast. 2019;34(10):2253–9. https://doi.org/10.1016/j.arth.2019.05.021.
Article
Google Scholar
Mehta SJ, Hume E, Troxel AB, et al. Effect of remote monitoring on discharge to home, return to activity, and Rehospitalization after hip and knee arthroplasty: a randomized clinical trial. JAMA Netw Open. 2020;3(12):e2028328. https://doi.org/10.1001/jamanetworkopen.2020.28328.
Article
PubMed
PubMed Central
Google Scholar
Bovonratwet P, Shen TS, Islam W, Ast MP, Haas SB, Su EP. Natural language processing of patient-experience comments after primary Total knee arthroplasty. J Arthroplast. 2021;36(3):927–34. https://doi.org/10.1016/j.arth.2020.09.055.
Article
Google Scholar
Sagheb E, Ramazanian T, Tafti AP, et al. Use of natural language processing algorithms to identify common data elements in operative notes for knee arthroplasty. J Arthroplast. 2021;36(3):922–6. https://doi.org/10.1016/j.arth.2020.09.029.
Article
Google Scholar
Kazarian GS, Lawrie CM, Barrack TN, et al. The impact of surgeon volume and training status on implant alignment in Total knee arthroplasty. J Bone Joint Surg Am. 2019;101(19):1713–23. https://doi.org/10.2106/JBJS.18.01205.
Article
PubMed
Google Scholar
Bartlett JD, Lawrence JE, Stewart ME, Nakano N, Khanduja V. Does virtual reality simulation have a role in training trauma and orthopaedic surgeons? Bone Joint J. 2018;100-B(5):559–65. https://doi.org/10.1302/0301-620X.100B5.BJJ-2017-1439.
Article
CAS
PubMed
Google Scholar
Clarke E. Virtual reality simulation-the future of orthopaedic training? A systematic review and narrative analysis. Adv Simul (Lond). 2021;6(1):2. https://doi.org/10.1186/s41077-020-00153-x.
Article
Google Scholar
Ren AN, Neher RE, Bell T, Grimm J. Using patient demographics and statistical modeling to predict knee tibia component sizing in Total knee arthroplasty. J Arthroplast. 2018;33(6):1732–6. https://doi.org/10.1016/j.arth.2018.01.031.
Article
Google Scholar
Sershon RA, Courtney PM, Rosenthal BD, Sporer SM, Levine BR. Can demographic variables accurately predict component sizing in primary Total knee arthroplasty? J Arthroplast. 2017;32(10):3004–8. https://doi.org/10.1016/j.arth.2017.05.007.
Article
Google Scholar
Bhowmik-Stoker M, Scholl L, Khlopas A, et al. Accurately predicting Total knee component size without preoperative radiographs. Surg Technol Int. 2018;33:337–42.
Batailler C, Fernandez A, Swan J, et al. MAKO CT-based robotic arm-assisted system is a reliable procedure for total knee arthroplasty: a systematic review. Knee Surg Sports Traumatol Arthrosc. 2021;29(11):3585–98. https://doi.org/10.1007/s00167-020-06283-z.
Batailler C, Hannouche D, Benazzo F, Parratte S. Concepts and techniques of a new robotically assisted technique for total knee arthroplasty: the ROSA knee system. Arch Orthop Trauma Surg. 2021;141(12):2049–58. https://doi.org/10.1007/s00402-021-04048-y.
Batailler C, Bordes M, Lording T, et al. Improved sizing with image-based robotic-assisted system compared to image-free and conventional techniques in medial unicompartmental knee arthroplasty. Bone Joint J. 2021;103-B(4):610–8. https://doi.org/10.1302/0301-620X.103B4.BJJ-2020-1453.R1.
Article
PubMed
Google Scholar
Jacofsky DJ, Allen M. Robotics in arthroplasty: a comprehensive review. J Arthroplast. 2016;31(10):2353–63. https://doi.org/10.1016/j.arth.2016.05.026.
Article
Google Scholar
van der List JP, Chawla H, Joskowicz L, Pearle AD. Current state of computer navigation and robotics in unicompartmental and total knee arthroplasty: a systematic review with meta-analysis. Knee Surg Sports Traumatol Arthrosc. 2016;24(11):3482–95. https://doi.org/10.1007/s00167-016-4305-9.
Article
PubMed
Google Scholar
Kayani B, Konan S, Pietrzak JRT, Haddad FS. Iatrogenic bone and soft tissue trauma in robotic-arm assisted Total knee arthroplasty compared with conventional jig-based Total knee arthroplasty: a prospective cohort study and validation of a new classification system. J Arthroplast. 2018;33(8):2496–501. https://doi.org/10.1016/j.arth.2018.03.042.
Article
Google Scholar
Sires JD, Wilson CJ. CT validation of intraoperative implant position and knee alignment as determined by the MAKO Total knee arthroplasty system. J Knee Surg. 2021;34(10):1133–7. https://doi.org/10.1055/s-0040-1701447.
Kayani B, Konan S, Huq SS, Tahmassebi J, Haddad FS. Robotic-arm assisted total knee arthroplasty has a learning curve of seven cases for integration into the surgical workflow but no learning curve effect for accuracy of implant positioning. Knee Surg Sports Traumatol Arthrosc. 2019;27(4):1132–41. https://doi.org/10.1007/s00167-018-5138-5.
Article
PubMed
Google Scholar
Sultan AA, Samuel LT, Khlopas A, et al. Robotic-arm assisted Total knee arthroplasty more accurately restored the posterior condylar offset ratio and the Insall-Salvati index compared to the manual technique; a cohort-matched study. Surg Technol Int. 2019;34:409–13.
Gilmour A, MacLean AD, Rowe PJ, et al. Robotic-arm-assisted vs conventional Unicompartmental knee arthroplasty. The 2-year clinical outcomes of a randomized controlled trial. J Arthroplast. 2018;33(7S):S109–15. https://doi.org/10.1016/j.arth.2018.02.050.
Article
Google Scholar
Bhimani S, Bhimani R, Smith A, Eccles C, Smith L, Malkani A. Robotic-assisted total knee arthroplasty demonstrates decreased postoperative pain and opioid usage compared to conventional total knee arthroplasty. Bone Joint Open. 2020;2020(1–2):8–12.
Article
Google Scholar
Naziri Q, Cusson BC, Chaudhri M, Shah NV, Sastry A. Making the transition from traditional to robotic-arm assisted TKA: what to expect? A single-surgeon comparative-analysis of the first-40 consecutive cases. J Orthop. 2019;16(4):364–8. https://doi.org/10.1016/j.jor.2019.03.010.
Article
PubMed
PubMed Central
Google Scholar
Batailler C, White N, Ranaldi FM, Neyret P, Servien E, Lustig S. Improved implant position and lower revision rate with robotic-assisted unicompartmental knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2018;27(4):1232–40. https://doi.org/10.1007/s00167-018-5081-5.
Blyth MJG, Anthony I, Rowe P, Banger MS, MacLean A, Jones B. Robotic arm-assisted versus conventional unicompartmental knee arthroplasty: exploratory secondary analysis of a randomised controlled trial. Bone Joint Res. 2017;6(11):631–9. https://doi.org/10.1302/2046-3758.611.BJR-2017-0060.R1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hansen DC, Kusuma SK, Palmer RM, Harris KB. Robotic guidance does not improve component position or short-term outcome in medial unicompartmental knee arthroplasty. J Arthroplast. 2014;29(9):1784–9. https://doi.org/10.1016/j.arth.2014.04.012.
Article
Google Scholar
Liu H, Auvinet E, Giles J, Rodriguez YBF. Augmented reality based navigation for computer assisted hip resurfacing: a proof of concept study. Ann Biomed Eng. 2018;46(10):1595–605. https://doi.org/10.1007/s10439-018-2055-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Auvinet E, Maillot C, Uzoho C. Augmented reality Technology for Joint Replacement. In: Riviere C, Vendittoli PA, editors. Personalized hip and knee joint replacement. Cham: Springer; 2020. p. 321–8.
Kline PW, Melanson EL, Sullivan WJ, et al. Improving physical activity through adjunct Telerehabilitation following Total knee arthroplasty: randomized controlled trial protocol. Phys Ther. 2019;99(1):37–45. https://doi.org/10.1093/ptj/pzy119.
Article
PubMed
Google Scholar
Wang S, Summers RM. Machine learning and radiology. Med Image Anal. 2012;16(5):933–51. https://doi.org/10.1016/j.media.2012.02.005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Deo RC. Machine learning in medicine. Circulation. 2015;132(20):1920–30. https://doi.org/10.1161/CIRCULATIONAHA.115.001593.
Article
PubMed
PubMed Central
Google Scholar
Raghupathi W, Raghupathi V. Big data analytics in healthcare: promise and potential. Health Inf Sci Syst. 2014;23. https://doi.org/10.1186/2047-2501-2-3.
Judge A, Arden NK, Cooper C, et al. Predictors of outcomes of total knee replacement surgery. Rheumatology (Oxford). 2012;51(10):1804–13. https://doi.org/10.1093/rheumatology/kes075.
Article
Google Scholar
Lungu E, Desmeules F, Dionne CE, Belzile EL, Vendittoli PA. Prediction of poor outcomes six months following total knee arthroplasty in patients awaiting surgery. BMC Musculoskelet Disord. 2014;15299. https://doi.org/10.1186/1471-2474-15-299.
Dowsey MM, Spelman T, Choong PF. Development of a prognostic nomogram for predicting the probability of nonresponse to Total knee arthroplasty 1 year after surgery. J Arthroplast. 2016;31(8):1654–60. https://doi.org/10.1016/j.arth.2016.02.003.
Article
Google Scholar
Pua YH, Seah FJ, Clark RA, Poon CL, Tan JW, Chong HC. Development of a prediction model to estimate the risk of walking limitations in patients with Total knee arthroplasty. J Rheumatol. 2016;43(2):419–26. https://doi.org/10.3899/jrheum.150724.
Article
CAS
PubMed
Google Scholar
Van Onsem S, Van Der Straeten C, Arnout N, Deprez P, Van Damme G, Victor J. A new prediction model for patient satisfaction after Total knee arthroplasty. J Arthroplast. 2016;31(12):2660–2667 e2661. https://doi.org/10.1016/j.arth.2016.06.004.
Article
Google Scholar
To J, Sinha R, Kim SW, et al. Predicting perioperative transfusion in elective hip and knee arthroplasty: a validated predictive model. Anesthesiology. 2017;127(2):317–25. https://doi.org/10.1097/ALN.0000000000001709.
Article
PubMed
Google Scholar
Garriga C, Sanchez-Santos MT, Judge A, et al. Development of a model predicting non-satisfaction 1 year after primary total knee replacement in the UK and transportation to Switzerland. Sci Rep. 2018;8(1):3380. https://doi.org/10.1038/s41598-018-21713-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shim J, McLernon DJ, Hamilton D, Simpson HA, Beasley M, Macfarlane GJ. Development of a clinical risk score for pain and function following total knee arthroplasty: results from the TRIO study. Rheumatol Adv Pract. 2018;2(2):rky021. https://doi.org/10.1093/rap/rky021.
Article
PubMed
PubMed Central
Google Scholar
Kunze KN, Akram F, Fuller BC, Zabawa L, Sporer SM, Levine BR. Internal validation of a predictive model for satisfaction after primary Total knee arthroplasty. J Arthroplast. 2019;34(4):663–70. https://doi.org/10.1016/j.arth.2018.12.020.
Article
Google Scholar
Navarro SM, Wang EY, Haeberle HS, et al. Machine learning and primary Total knee arthroplasty: patient forecasting for a patient-specific payment model. J Arthroplast. 2018;33(12):3617–23. https://doi.org/10.1016/j.arth.2018.08.028.
Article
Google Scholar
Sanchez-Santos MT, Garriga C, Judge A, et al. Development and validation of a clinical prediction model for patient-reported pain and function after primary total knee replacement surgery. Sci Rep. 2018;8(1):3381. https://doi.org/10.1038/s41598-018-21714-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Van Onsem S, Verstraete M, Dhont S, Zwaenepoel B, Van Der Straeten C, Victor J. Improved walking distance and range of motion predict patient satisfaction after TKA. Knee Surg Sports Traumatol Arthrosc. 2018;26(11):3272–9. https://doi.org/10.1007/s00167-018-4856-z.
Article
PubMed
Google Scholar
Calkins TE, Culvern C, Nahhas CR, et al. External validity of a new prediction model for patient satisfaction after Total knee arthroplasty. J Arthroplast. 2019;34(8):1677–81. https://doi.org/10.1016/j.arth.2019.04.021.
Article
Google Scholar
Zabawa L, Li K, Chmell S. Patient dissatisfaction following total knee arthroplasty: external validation of a new prediction model. Eur J Orthop Surg Traumatol. 2019;29(4):861–7. https://doi.org/10.1007/s00590-019-02375-w.
Article
PubMed
Google Scholar
Twiggs JG, Wakelin EA, Fritsch BA, et al. Clinical and statistical validation of a probabilistic prediction tool of Total knee arthroplasty outcome. J Arthroplast. 2019;34(11):2624–31. https://doi.org/10.1016/j.arth.2019.06.007.
Article
Google Scholar
Tolk JJ, Waarsing JEH, Janssen RPA, van Steenbergen LN, Bierma-Zeinstra SMA, Reijman M. Development of preoperative prediction models for pain and functional outcome after Total knee arthroplasty using the Dutch arthroplasty register data. J Arthroplast. 2020;35(3):690–698 e692. https://doi.org/10.1016/j.arth.2019.10.010.
Article
Google Scholar
Huber M, Kurz C, Leidl R. Predicting patient-reported outcomes following hip and knee replacement surgery using supervised machine learning. BMC Med Inform Decis Mak. 2019;19(1):3. https://doi.org/10.1186/s12911-018-0731-6.
Article
PubMed
PubMed Central
Google Scholar
Gronbeck C, Cote MP, Halawi MJ. Predicting inpatient status after primary Total knee arthroplasty in Medicare-aged patients. J Arthroplast. 2019;34(7):1322–7. https://doi.org/10.1016/j.arth.2019.03.009.
Article
Google Scholar
Jo C, Ko S, Shin WC, et al. Transfusion after total knee arthroplasty can be predicted using the machine learning algorithm. Knee Surg Sports Traumatol Arthrosc. 2020;28(6):1757–64. https://doi.org/10.1007/s00167-019-05602-3.
Article
PubMed
Google Scholar
Pua YH, Kang H, Thumboo J, et al. Machine learning methods are comparable to logistic regression techniques in predicting severe walking limitation following total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2020;28(10):3207–16. https://doi.org/10.1007/s00167-019-05822-7.
Article
PubMed
Google Scholar
Itou J, Itoh M, Kuwashima U, Okazaki K. Assessing the validity of a new prediction model for patient satisfaction after Total knee arthroplasty: a retrospective cross-sectional study. Orthop Res Rev. 2020:12133–7. https://doi.org/10.2147/ORR.S271253.
Li H, Jiao J, Zhang S, Tang H, Qu X, Yue B. Construction and comparison of predictive models for length of stay after Total knee arthroplasty: regression model and machine learning analysis based on 1,826 cases in a single Singapore center. J Knee Surg. 2020. https://doi.org/10.1055/s-0040-1710573.
Kunze KN, Polce EM, Sadauskas AJ, Levine BR. Development of machine learning algorithms to predict patient dissatisfaction after primary Total knee arthroplasty. J Arthroplast. 2020;35(11):3117–22. https://doi.org/10.1016/j.arth.2020.05.061.
Article
Google Scholar
Turcotte JJ, Menon N, Kelly ME, Grover JJ, King PJ, MacDonald JH. Preoperative predictors of same-day discharge after Total knee arthroplasty. Arthroplast Today. 2021:7182–7. https://doi.org/10.1016/j.artd.2020.12.006.
Harris AHS, Kuo AC, Bowe TR, Manfredi L, Lalani NF, Giori NJ. Can machine learning methods produce accurate and easy-to-use preoperative prediction models of one-year improvements in pain and functioning after knee arthroplasty? J Arthroplast. 2021;36(1):112–117 e116. https://doi.org/10.1016/j.arth.2020.07.026.
Article
Google Scholar
Goltz DE, Ryan SP, Attarian DE, Jiranek WA, Bolognesi MP, Seyler TM. A preoperative risk prediction tool for discharge to a skilled nursing or rehabilitation facility after Total joint arthroplasty. J Arthroplast. 2021;36(4):1212–9. https://doi.org/10.1016/j.arth.2020.10.038.
Article
Google Scholar
Farooq H, Deckard ER, Ziemba-Davis M, Madsen A, Meneghini RM. Predictors of patient satisfaction following primary Total knee arthroplasty: results from a traditional statistical model and a machine learning algorithm. J Arthroplast. 2020;35(11):3123–30. https://doi.org/10.1016/j.arth.2020.05.077.
Article
Google Scholar
El-Galaly A, Grazal C, Kappel A, Nielsen PT, Jensen SL, Forsberg JA. Can machine-learning algorithms predict early revision TKA in the Danish knee arthroplasty registry? Clin Orthop Relat Res. 2020;478(9):2088–101. https://doi.org/10.1097/CORR.0000000000001343.
Article
PubMed
PubMed Central
Google Scholar
Anis HK, Strnad GJ, Klika AK, et al. Developing a personalized outcome prediction tool for knee arthroplasty. Bone Joint J. 2020;102-B(9):1183–93. https://doi.org/10.1302/0301-620X.102B9.BJJ-2019-1642.R1.
Article
PubMed
Google Scholar
Ko S, Jo C, Chang CB, et al. A web-based machine-learning algorithm predicting postoperative acute kidney injury after total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2020. https://doi.org/10.1007/s00167-020-06258-0.
Andersen JD, Hangaard S, Buus AAO, Laursen M, Hejlesen OK, El-Galaly A. Development of a multivariable prediction model for early revision of total knee arthroplasty - the effect of including patient-reported outcome measures. J Orthop. 2021:24216–21. https://doi.org/10.1016/j.jor.2021.03.001.
Han C, Liu J, Wu Y, Chong Y, Chai X, Weng X. To predict the length of hospital stay after Total knee arthroplasty in an orthopedic Center in China: the use of machine learning algorithms. Front Surg. 2021;8606038. https://doi.org/10.3389/fsurg.2021.606038.
Baker PN, van der Meulen JH, Lewsey J, Gregg PJ, National Joint Registry for E, Wales. The role of pain and function in determining patient satisfaction after total knee replacement. Data from the National Joint Registry for England and Wales. J Bone Joint Surg Br. 2007;89(7):893–900. https://doi.org/10.1302/0301-620X.89B7.19091.
Article
CAS
PubMed
Google Scholar
Baker PN, Deehan DJ, Lees D, et al. The effect of surgical factors on early patient-reported outcome measures (PROMS) following total knee replacement. J Bone Joint Surg Br. 2012;94(8):1058–66. https://doi.org/10.1302/0301-620X.94B8.28786.
Article
CAS
PubMed
Google Scholar
Brander VA, Stulberg SD, Adams AD, et al. Predicting total knee replacement pain: a prospective, observational study. Clin Orthop Relat Res. 2003;416:27–36. https://doi.org/10.1097/01.blo.0000092983.12414.e9.
Article
Google Scholar
Wylde V, Rooker J, Halliday L, Blom A. Acute postoperative pain at rest after hip and knee arthroplasty: severity, sensory qualities and impact on sleep. Orthop Traumatol Surg Res. 2011;97(2):139–44. https://doi.org/10.1016/j.otsr.2010.12.003.
Article
CAS
PubMed
Google Scholar
Batailler C, Lording T, De Massari D, Witvoet-Braam S, Bini S, Lustig S. Predictive models for clinical outcomes in Total knee arthroplasty: a systematic analysis. Arthroplast Today. 2021:91–15. https://doi.org/10.1016/j.artd.2021.03.013.
Escobar A, Quintana JM, Bilbao A, et al. Development of explicit criteria for prioritization of hip and knee replacement. J Eval Clin Pract. 2007;13(3):429–34. https://doi.org/10.1111/j.1365-2753.2006.00733.x.
Article
PubMed
Google Scholar
Riddle DL, Perera RA, Jiranek WA, Dumenci L. Using surgical appropriateness criteria to examine outcomes of total knee arthroplasty in a United States sample. Arthritis Care Res (Hoboken). 2015;67(3):349–57. https://doi.org/10.1002/acr.22428.
Article
Google Scholar
Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25(1):44–56. https://doi.org/10.1038/s41591-018-0300-7.
Article
CAS
PubMed
Google Scholar