Longo UG, Ciuffreda M, Mannering N, D’Andrea V, Locher J, Salvatore G, et al. Outcomes of Posterior-Stabilized Compared with Cruciate-Retaining Total Knee Arthroplasty. J Knee Surg. 2018;31(4):321–40.
Article
Google Scholar
Most E, Zayontz S, Li G, Otterberg E, Sabbag K, Rubash HE. Femoral rollback after cruciate-retaining and stabilizing total knee arthroplasty. Clin Orthop Relat Res. 2003;410:101–13.
Article
Google Scholar
Watanabe T, Koga H, Horie M, Katagiri H, Sekiya I, Muneta T. Post-Cam Design and Contact Stress on Tibial Posts in Posterior-Stabilized Total Knee Prostheses: Comparison Between a Rounded and a Squared Design. J Arthroplasty. 2017;32(12):3757–62.
Article
Google Scholar
Koh YG, Nam JH, Kang KT. Effect of geometric variations on tibiofemoral surface and post-cam design of normal knee kinematics restoration. J Exp Orthop. 2018;5(1):53.
Article
Google Scholar
Arnout N, Vanlommel L, Vanlommel J, Luyckx JP, Labey L, Innocenti B, et al. Post-cam mechanics and tibiofemoral kinematics: a dynamic in vitro analysis of eight posterior-stabilized total knee designs. Knee Surg Sports Traumatol Arthrosc. 2015;23(11):3343–53.
Article
CAS
Google Scholar
Bourne R, Chesworth B, Davis A, Mohamed N, Charron K. Patient satisfaction after total knee arthroplasty: Who is satisfied and who is not? Clin Orthop Relat Res. 2010;468(1):57–63.
Article
Google Scholar
Williams D, Garbuz D, Masri B. Total knee arthroplasty: Techniques and results. B C Med J. 2010;52(9):447–54.
Google Scholar
Macheras GA, Galanakos SP, Lepetsos P, Anastasopoulos PP, Papadakis SA. A long term clinical outcome of the Medial Pivot Knee Arthroplasty System. Knee. 2017;24(2):447–53.
Article
Google Scholar
Fehring T, Odum S, Griffin W, Mason J, Nadaud M. Early failures in total knee arthroplasty. Clin Orthop Relat Res. 2001;392:315–8.
Article
Google Scholar
Lombardi A, Berend K, Adams J. Why knee replacements fail in 2013: Patient, surgeon, or implant? Bone Joint J. 2014;96-B(11 Suppl A):101–4.
Article
Google Scholar
Sharkey P, Lichstein P, Shen C, Tokarski A, Parvizi J. Why are total knee arthroplasties failing today–has anything changed after 10 years? J Arthroplast. 2014;29(9):1774–8.
Article
Google Scholar
Rodriguez-Merchan EC. The stiff total knee arthroplasty: causes, treatment modalities and results. EFORT Open Rev. 2019;4(10):602–10.
Article
Google Scholar
Kayani B, Konan S, Ayuob A, Onochie E, Al-Jabri T, Haddad FS. Robotic technology in total knee arthroplasty: a systematic review. EFORT Open Rev. 2019;4(10):611–7.
Article
Google Scholar
Asano H, Muneta T, Sekiya I. Soft tissue tension in extension in total knee arthroplasty affects postoperative knee extension and stability. Knee Surg Sports Traumatol Arthrosc. 2008;16(11):999–1003.
Article
Google Scholar
Risitano S, Karamian B, Indelli PF. Intraoperative load-sensing drives the level of constraint in primary total knee arthroplasty: Surgical technique and review of the literature. J Clin Orthop Trauma. 2017;8(3):265–9.
Article
Google Scholar
Gustke KA, Golladay GJ, Roche MW, Elson LC, Anderson CR. A new method for defining balance: promising short-term clinical outcomes of sensor-guided TKA. J Arthroplasty. 2014;29(5):955–60.
Article
Google Scholar
Meneghini RM, Ziemba-Davis MM, Lovro LR, Ireland PH, Damer BM. Can Intraoperative Sensors Determine the “Target” Ligament Balance? Early Outcomes in Total Knee Arthroplasty. J Arthroplasty. 2016;31(10):2181–7.
Article
Google Scholar
Willing R, Walker P. Measuring the sensitivity of total knee replacement kinematics and laxity to soft tissue imbalances. J Biomech. 2018;77:62–8.
Article
Google Scholar
Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging. 2012;30(9):1323–41.
Article
Google Scholar
Laprade C, Civitarese D, Rasmussen M, Laprade R. Emerging updates on the posterior cruciate ligament. Am J Sports Med. 2015;43(12):3077–92.
Article
Google Scholar
LaPrade R, Engebretsen A, Ly T, Johansen S, Wentorf F, Engebretsen L. The anatomy of the medial part of the knee. J Bone Jt Surg- Ser A. 2007;89(9):2000–10.
Article
Google Scholar
Hosseini A, Qi W, Tsai T, Rubash H, Li G. In vivo length change patterns of the medial and lateral collateral ligaments along the flexion path of the knee. Knee Surg Sport Traumatal Arthrosc. 2015;23(10):3055–61.
Article
Google Scholar
Edwards A, Bull A, Amis A. The attachments of the Fiber Bundles of the posterior cruciate ligament: An anatomic study. Arthrosc- J Arthrosc Relat Surg. 2007;23(3):284–90.
Article
Google Scholar
Nasab S, List R, Oberhofer K, Fucentese S, Snedeker J, Taylor W. Loading patterns of the posterior cruciate ligament int he healthy knee: A systemativ review. PLoS One. 2016;11(11):1–28.
Google Scholar
Serra Cruz R, Olivetto J, Dean C, Chahla J, Laprade R. Superficial Medial Collateral Ligament of the knee: Anatomic Augmentation with Semitendinosus and Gracilis Tendon Autografts. Arthrosc Tech. 2016;5(2):347–52.
Article
Google Scholar
Bedi A, Laprade R, Burrus M. Knee Ligaments Landmarks anatomy. 2018. p. 1241–50.
Google Scholar
Saigo T, Tajima G, Kikuchi S, Yan J, Maruyama M, Sugawara A, et al. Morphology of the Insertions of the Superficial Medial Collateral Ligament and Posterior Oblique Ligament Using 3-Dimensional Computed Tomography: A Cadaveric Study. Arthrosc J Arthrosc Relat Surg. 2017;33(2):400–7.
Article
Google Scholar
Guess TM, Razu S, Jahandar H. Evaluation of Knee Ligament Mechanics Using Computational Models. J Knee Surg. 2016;29(2):126–37.
Article
Google Scholar
Bloemker K, Guess T, Maletsky L, Dodd K. Computational Knee Ligament Modeling Using Experimentally Determined Zero-Load Lengths. Open biomed Eng J. 2012;6:33–41.
Article
Google Scholar
Peters A, Akhtar R, Comerford E, Bates K. Tissue material properties and computational modelling of the human tibiofemoral joint: A critical review. PeerJ. 2018;25(6):e4298.
Article
Google Scholar
Dennis DA, Komistek RD, Colwell CE Jr, Ranawat CS, Scott RD, Thornhill TS, et al. In vivo anteroposterior femorotibial translation of total knee arthroplasty: a multicenter analysis. Clin Orthop Relat Res. 1998;356:47–57.
Article
Google Scholar
Piazza SJ, Delp SL, Stulberg SD, Stern SH. Posterior tilting of the tibial component decreases femoral rollback in posterior-substituting knee replacement: a computer simulation study. J Orthop Res. 1998;16(2):264–70.
Article
CAS
Google Scholar
McNabb DC, Kim RH, Springer BD. Instability after total knee arthroplasty. J Knee Surg. 2015;28(2):97–104.
Article
Google Scholar
Hamai S, Okazaki K, Shimoto T, Nakahara H, Higaki H, Iwamoto Y. Continuous sagittal radiological evaluation of stair-climbing in cruciate-retaining and posterior-stabilized total knee arthroplasties using image-matching techniques. J Arthroplasty. 2015;30(5):864–9.
Article
Google Scholar
Lin KJ, Huang CH, Liu YL, Chen WC, Chang TW, Yang CT, et al. Influence of post-cam design of posterior stabilized knee prosthesis on tibiofemoral motion during high knee flexion. Clin Biomech (Bristol, Avon). 2011;26(8):847–52.
Article
Google Scholar
Puloski SK, McCalden RW, MacDonald SJ, Rorabeck CH, Bourne RB. Tibial post wear in posterior stabilized total knee arthroplasty. An unrecognized source of polyethylene debris. J Bone Joint Surg Am. 2001;83(3):390–7.
Article
CAS
Google Scholar
Akasaki Y, Matsuda S, Shimoto T, Miura H, Higaki H, Iwamoto Y. Contact stress analysis of the conforming post-cam mechanism in posterior-stabilized total knee arthroplasty. J Arthroplasty. 2008;23(5):736–43.
Article
Google Scholar
Huang CH, Liau JJ, Huang CH, Cheng CK. Stress analysis of the anterior tibial post in posterior stabilized knee prostheses. J Orthop Res. 2007;25(4):442–9.
Article
Google Scholar
Delp SL, Kocmond JH, Stern SH. Tradeoffs between motion and stability in posterior substituting knee arthroplasty design. J Biomech. 1995;28(10):1155–66.
Article
CAS
Google Scholar
Fitzpatrick CK, Clary CW, Cyr AJ, Maletsky LP, Rullkoetter PJ. Mechanics of post-cam engagement during simulated dynamic activity. J Orthop Res. 2013;31(9):1438–46.
Article
Google Scholar
Shimizu N, Tomita T, Yamazaki T, Yoshikawa H, Sugamoto K. The effect of weight-bearing condition on kinematics of a high-flexion, posterior-stabilized knee prosthesis. J Arthroplasty. 2011;26(7):1031–7.
Article
Google Scholar
Sumino T, Tomita T, Sugamoto K, Yamazaki T, Okazaki K. Semi-constrained posterior stabilized total knee arthroplasty reproduces natural deep knee bending kinematics. BMC Musculoskelet Disord. 2020;21(1):107.
Article
Google Scholar
Suggs JF, Hanson GR, Park SE, Moynihan AL, Li G. Patient function after a posterior stabilizing total knee arthroplasty: cam-post engagement and knee kinematics. Knee Surg Sports Traumatol Arthrosc. 2008;16(3):290–6.
Article
Google Scholar
Chandran N, Amirouche F, Gonzalez MH, Hilton KM, Barmada R, Goldstein W. Optimisation of the posterior stabilised tibial post for greater femoral rollback after total knee arthroplasty–a finite element analysis. Int Orthop. 2009;33(3):687–93.
Article
Google Scholar
Lanting BA, Snider MG, Chess DG. Effect of polyethylene component thickness on range of motion and stability in primary total knee arthroplasty. Orthopedics. 2012;35(2):e170-4.
Article
Google Scholar
Belvedere C, Leardini A, Catani F, Pianigiani S, Innocenti B. In vivo kinematics of knee replacement during daily living activities: Condylar and post-cam contact assessment by three-dimensional fluoroscopy and finite element analyses. J Orthop Res. 2017;35(7):1396–403.
Article
Google Scholar
Kuwashima U, Hamai S, Okazaki K, Ikebe S, Higaki H, Mizu-Uchi H, et al. Contact stress analysis of the anterior tibial post in bi-cruciate stabilized and mobile-bearing posterior stabilized total knee arthroplasty designs. J Mech Behav Biomed Mater. 2016;60:460–7.
Article
Google Scholar
Teeter MG, Perry KI, Yuan X, Howard JL, Lanting BA. Contact Kinematics Correlates to Tibial Component Migration Following Single Radius Posterior Stabilized Knee Replacement. J Arthroplasty. 2018;33(3):740–5.
Article
Google Scholar
Zimmer NexGen Design Rationale [Available from: https://www.zimmerbiomet.com/content/dam/zimmer-biomet/medical-professionals/knee/nexgen-complete-knee-solution-legacy-knee-posterior-stabilized/nexgen-cr-flex-and-lps-flex-knees-design-rationale.pdf. (Accessed 9 Sept 2022)
Cates HE, Komistek RD, Mahfouz MR, Schmidt MA, Anderle M. In vivo comparison of knee kinematics for subjects having either a posterior stabilized or cruciate retaining high-flexion total knee arthroplasty. J Arthroplasty. 2008;23(7):1057–67.
Article
Google Scholar
Tamaki M, Tomita T, Yamazaki T, Hozack WJ, Yoshikawa H, Sugamoto K. In vivo kinematic analysis of a high-flexion posterior stabilized fixed-bearing knee prosthesis in deep knee-bending motion. J Arthroplasty. 2008;23(6):879–85.
Article
Google Scholar
Zaffagnini S, Bignozzi S, Saffarini M, Colle F, Sharma B, Kinov PS, et al. Comparison of stability and kinematics of the natural knee versus a PS TKA with a ‘third condyle.’ Knee Surg Sports Traumatol Arthrosc. 2014;22(8):1778–85.
Article
Google Scholar
Blakeney W, Clément J, Desmeules F, Hagemeister N, Rivière C, Vendittoli P. Kinematic alignment in total knee arthroplasty better reproduces normal gait than mechanical alignment. Knee Surg Sport Traumatol Arthrosc. 2019;27(5):1410–7.
Article
Google Scholar
Rivière C, Iranpour F, Auvinet E, Howell S, Vendittoli P, Cobb J, et al. Alignment options for total knee arthroplasty: A systematic review. Orthop Traumatol Surg Res. 2017;103(7):1047–56.
Article
Google Scholar
Ishikawa M, Kuriyama S, Ito H, Furu M, Nakamura S, Matsuda S. Kinematic alignment produces near-normal knee motion but increases contact stress after total knee arthroplasty: A case study on a single implant design. Knee. 2015;22(3):206–12.
Article
Google Scholar
Luo Z, Zhou K, Peng L, Shang Q, Pei F, Zhou Z. Similar results with kinematic and mechanical alignment applied in total knee arthroplasty. Knee Surg Sport Traumatal Arthrosc. 2020;28(6):1720–35.
Article
Google Scholar
Lanting B, Williams H, Matlovich N, Vandekerckhove P, Teeter M, Vasarhelyi E, et al. The impact of residual varus alignment following total knee arthroplasty on patient outcome scores in a constitutional varus population. Knee. 2018;25(6):1278–82.
Article
Google Scholar
Willing R, Moslemian A, Yamomo G, Wood T, Howard J, Lanting B. Condylar-Stabilized TKR May Not Fully Compensate for PCL-Deficiency: An In Vitro Cadaver Study. J Orthop Res. 2019;37(10):2172–81.
Article
CAS
Google Scholar