Jolback P, Rolfson O, Mohaddes M, Nemes S, Karrholm J, Garellick G, et al. Does surgeon experience affect patient-reported outcomes 1 year after primary total hip arthroplasty? Acta Orthop. 2018;89:265–71.
Article
PubMed
PubMed Central
Google Scholar
Pivec R, Johnson AJ, Mears SC, Mont MA. Hip arthroplasty. Lancet. 2012;380:1768–77.
Article
PubMed
Google Scholar
Bierbaum BE, Callaghan JJ, Galante JO, Rubash HE, Tooms RE, Welch RB. An analysis of blood management in patients having a total hip or knee arthroplasty. J Bone Joint Surg Am. 1999;81:2–10.
Article
CAS
PubMed
Google Scholar
Kim C, Park SS, Davey JR. Tranexamic acid for the prevention and management of orthopedic surgical hemorrhage: current evidence. J Blood Med. 2015;6:239–44.
CAS
PubMed
PubMed Central
Google Scholar
Saleh A, Small T, Chandran PA, Schiltz NK, Klika AK, Barsoum WK. Allogenic blood transfusion following total hip arthroplasty: results from the nationwide inpatient sample, 2000 to 2009. J Bone Joint Surg Am. 2014;96:e155.
Article
PubMed
PubMed Central
Google Scholar
Wong S, Tang H, de Steiger R. Blood management in total hip replacement: an analysis of factors associated with allogenic blood transfusion. ANZ J Surg. 2015;85:461–5.
Article
PubMed
Google Scholar
Appassakij H, Promwong C, Rujirojindakul P, Wutthanarungsan R, Silpapojakul K. The risk of blood transfusion-associated Chikungunya fever during the 2009 epidemic in Songkhla Province, Thailand. Transfusion. 2014;54:1945–52.
Article
PubMed
Google Scholar
Bilgili MG, Ercin E, Peker G, Kural C, Basaran SH, Duramaz A, et al. Efficiency and cost analysis of cell saver auto transfusion system in total knee arthroplasty. Balkan Med J. 2014;31:149–53.
PubMed
Google Scholar
Dan M, Liu D, Martos SM, Beller E. Intra-operative blood salvage in total hip and knee arthroplasty. J Orthop Surg (Hong Kong). 2016;24:204–8.
Article
CAS
Google Scholar
Huang F, Wu D, Ma G, Yin Z, Wang Q. The use of tranexamic acid to reduce blood loss and transfusion in major orthopedic surgery: a meta-analysis. J Surg Res. 2014;186:318–27.
Article
CAS
PubMed
Google Scholar
Izuel RM, Garcia EJ, Gomez-Barrera M, Cuenca EJ, Abad SR, Rabanaque HM. Relationship between allogeneic blood transfusion, iron deficiency and nosocomial infection in patients with hip fracture. Med Clin (Barc). 2008;131:647–52.
Marik PE, Corwin HL. Efficacy of red blood cell transfusion in the critically ill: a systematic review of the literature. Crit Care Med. 2008;36:2667–74.
Article
PubMed
Google Scholar
Zhang H, Chen J, Chen F, Que W. The effect of tranexamic acid on blood loss and use of blood products in total knee arthroplasty: a meta-analysis. Knee Surg Sports Traumatol Arthrosc. 2012;20:1742–52.
Article
PubMed
Google Scholar
Klapwijk LC, Mathijssen NM, Van Egmond JC, Verbeek BM, Vehmeijer SB. The first 6 weeks of recovery after primary total hip arthroplasty with fast track. Acta Orthop. 2017;88:140–4.
Article
PubMed
PubMed Central
Google Scholar
Malek IA, Royce G, Bhatti SU, Whittaker JP, Phillips SP, Wilson IR, et al. A comparison between the direct anterior and posterior approaches for total hip arthroplasty: the role of an ‘enhanced recovery’ pathway. Bone Joint J. 2016;98-B:754–60.
Article
CAS
PubMed
Google Scholar
Stowers MD, Manuopangai L, Hill AG, Gray JR, Coleman B, Munro JT. Enhanced recovery after surgery in elective hip and knee arthroplasty reduces length of hospital stay. ANZ J Surg. 2016;86:475–9.
Article
PubMed
Google Scholar
Cardone D, Klein AA. Perioperative blood conservation. Eur J Anaesthesiol. 2009;26:722–9.
Article
PubMed
Google Scholar
Lee QJ, Chang WY, Wong YC. Blood-sparing efficacy of oral tranexamic acid in primary total hip arthroplasty. J Arthroplast. 2017;32:139–42.
Article
CAS
Google Scholar
Eriksson BI, Hultman E, Martinell S, Eriksson E, Tengborn L, Risberg B. Regional fibrinolysis following total hip replacement. Thromb Res. 1991;62:441–7.
Article
CAS
PubMed
Google Scholar
Aguilera-Roig X, Jordan-Sales M, Natera-Cisneros L, Monllau-Garcia JC, Martinez-Zapata MJ. Tranexamic acid in orthopedic surgery. Rev Esp Cir Ortop Traumatol. 2014;58:52–6.
CAS
PubMed
Google Scholar
Dunn CJ, Goa KL. Tranexamic acid: a review of its use in surgery and other indications. Drugs. 1999;57:1005–32.
Article
CAS
PubMed
Google Scholar
Alipour M, Tabari M, Keramati M, Zarmehri AM, Makhmalbaf H. Effectiveness of oral tranexamic acid administration on blood loss after knee artroplasty: a randomized clinical trial. Transfus Apher Sci. 2013;49:574–7.
Article
PubMed
Google Scholar
Cao G, Huang Z, Xie J, Huang Q, Xu B, Zhang S, et al. The effect of oral versus intravenous tranexamic acid in reducing blood loss after primary total hip arthroplasty: a randomized clinical trial. Thromb Res. 2018;164:48–53.
Article
CAS
PubMed
Google Scholar
Kayupov E, Fillingham YA, Okroj K, Plummer DR, Moric M, Gerlinger TL, et al. Oral and intravenous Tranexamic acid are equivalent at reducing blood loss following total hip arthroplasty: a randomized controlled trial. J Bone Joint Surg Am. 2017;99:373–8.
Article
PubMed
Google Scholar
Luo ZY, Wang HY, Wang D, Zhou K, Pei FX, Zhou ZK. Oral vs intravenous vs topical tranexamic acid in primary hip arthroplasty: a prospective, randomized, double-blind, controlled study. J Arthroplasty. 2018;33:786–93.
Article
PubMed
Google Scholar
Wu Y, Zeng Y, Hu Q, Li M, Bao X, Zhong J, et al. Blood loss and cost-effectiveness of oral vs intravenous tranexamic acid in primary total hip arthroplasty: a randomized clinical trial. Thromb Res. 2018;171:143–8.
Article
CAS
PubMed
Google Scholar
Zhao H, Xiang M, Xia Y, Shi X, Pei FX, Kang P. Efficacy of oral tranexamic acid on blood loss in primary total hip arthroplasty using a direct anterior approach: a prospective randomized controlled trial. Int Orthop. 2018;42:2535–42.
Article
PubMed
Google Scholar
Kim JL, Park JH, Han SB, Cho IY, Jang KM. Allogeneic blood transfusion is a significant risk factor for surgical-site infection following total hip and knee arthroplasty: a meta-analysis. J Arthroplast. 2017;32:320–5.
Article
Google Scholar
Toy PT, Kaplan EB, McVay PA, Lee SJ, Strauss RG, Stehling LC. Blood loss and replacement in total hip arthroplasty: a multicenter study. The preoperative autologous blood donation study group. Transfusion. 1992;32:63–7.
Article
CAS
PubMed
Google Scholar
Li GL, Li YM. Oral tranexamic acid can reduce blood loss after total knee and hip arthroplasty: a meta-analysis. Int J Surg. 2017;46:27–36.
Article
PubMed
Google Scholar
Evangelista PJ, Aversano MW, Koli E, Hutzler L, Inneh I, Bosco J, et al. Effect of tranexamic acid on transfusion rates following total joint arthroplasty: a cost and comparative effectiveness analysis. Orthop Clin North Am. 2017;48:109–15.
Article
PubMed
Google Scholar
Gandhi R, Evans HM, Mahomed SR, Mahomed NN. Tranexamic acid and the reduction of blood loss in total knee and hip arthroplasty: a meta-analysis. BMC Res Notes. 2013;6:184.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li G, Zhang Y, Teng J. Efficiency and safety of oral tranexamic acid in total joint arthroplasty: a meta-analysis of randomized controlled trial. Int J Surg. 2017;47:148–50.
Article
PubMed
Google Scholar
Luo W, Sun RX, Jiang H, Ma XL. The efficacy and safety of topical administration of tranexamic acid in spine surgery: a meta-analysis. J Orthop Surg Res. 2018;13:96.
Article
PubMed
PubMed Central
Google Scholar
Chen S, Wu K, Kong G, Feng W, Deng Z, Wang H. The efficacy of topical tranexamic acid in total hip arthroplasty: a meta-analysis. BMC Musculoskelet Disord. 2016;17:81.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lucas-Polomeni MM, Delaval Y, Menestret P, Delaval P, Ecoffey C. A case of anaphylactic shock with tranexamique acid (Exacyl). Ann Fr Anesth Reanim. 2004;23:607–9.
Article
PubMed
Google Scholar
Klak M, Anakkala N, Wang W, Lange S, Jonsson IM, Tarkowski A, et al. Tranexamic acid, an inhibitor of plasminogen activation, aggravates staphylococcal septic arthritis and sepsis. Scand J Infect Dis. 2010;42:351–8.
Article
CAS
PubMed
Google Scholar
Sabbag OD, Abdel MP, Amundson AW, Larson DR, Pagnano MW. Tranexamic acid was safe in arthroplasty patients with a history of venous thromboembolism: a matched outcome study. J Arthroplast. 2017;32:S246–50.
Article
Google Scholar
Gullberg B, Johnell O, Kanis JA. World-wide projections for hip fracture. Osteoporos Int. 1997;7:407–13.
Article
CAS
PubMed
Google Scholar
Qi Y, Wang H, Li Y, Ma B, Xie T, Wang C, et al. The efficacy and safety of intravenous tranexamic acid in hip fracture surgery: a systematic review and meta-analysis. J Orthop Translat. 2019;19:1–11.
Article
PubMed
PubMed Central
Google Scholar
World Health Organization (WHO) (2017) WHO model list of essential medicines. Available at http://www.who.int/medicines/publications/essentialmedicines/en/.
Google Scholar
Pilbrant A, Schannong M, Vessman J. Pharmacokinetics and bioavailability of tranexamic acid. Eur J Clin Pharmacol. 1981;20:65–72.
Article
CAS
PubMed
Google Scholar
Blanie A, Bellamy L, Rhayem Y, Flaujac C, Samama CM, Fontenay M, et al. Duration of postoperative fibrinolysis after total hip or knee replacement: a laboratory follow-up study. Thromb Res. 2013;131:e6–11.
Article
CAS
PubMed
Google Scholar
Sharrock NE, Go G, Harpel PC, Ranawat CS, Sculco TP, Salvati EA. The John Charnley Award. Thrombogenesis during total hip arthroplasty. Clin Orthop Relat Res. 1995;319:16–27.
Zohar E, Ellis M, Ifrach N, Stern A, Sapir O, Fredman B. The postoperative blood-sparing efficacy of oral versus intravenous tranexamic acid after total knee replacement. Anesth Analg. 2004;99:1679–83.
Article
PubMed
Google Scholar
Xie J, Ma J, Yao H, Yue C, Pei F. Multiple boluses of intravenous tranexamic acid to reduce hidden blood loss after primary total knee arthroplasty without tourniquet: a randomized clinical trial. J Arthroplast. 2016;31:2458–64.
Article
Google Scholar
Xie J, Hu Q, Ma J, Huang Q, Pei F. Multiple boluses of intravenous tranexamic acid to reduce hidden blood loss and the inflammatory response following enhanced-recovery primary total hip arthroplasty: a randomised clinical trial. Bone Joint J. 2017;99-B:1442–9.
Article
CAS
PubMed
Google Scholar
Lin ZX, Woolf SK. Safety, efficacy, and cost-effectiveness of tranexamic acid in orthopedic surgery. Orthopedics. 2016;39:119–30.
Article
PubMed
Google Scholar
Ramkumar DB, Ramkumar N, Tapp SJ, Moschetti WE. Pharmacologic hemostatic agents in total joint arthroplasty-a cost-effectiveness analysis. J Arthroplast. 2018;33:2092–9.
Article
Google Scholar